Università degli Studi di Firenze

Dipartimento di Ingegneria dell'Informazione Tesi di Laurea Magistrale in Ingegneria Informatica

Analysis of the Evolution of Code Technical Debt in Microservices Architectures

Candidato Kevin Maggi

Relatori Dott.Ric. Roberto Verdecchia Prof. Enrico Vicario

Correlatore Dott.Ric. Leonardo Scommegna

Anno Accademico 2022/2023

Concetti chiave: Microservices Architecture, Code Technical Debt, Software Evolution

Analysis of the Evolution of Code Technical Debt in Microservices Architectures

- Methodology: Empirical quantitative study
- **Topics:** TD: short term expedients impacting maintainability

 MSA: widespread scalable and flexible architecture
- Motivation: Lack of studies in literature
- Background: Preliminary case study¹
- Aims: Insight on TD evolution and management in MSA

¹R. Verdecchia, K. Maggi, L. Scommegna, and E. Vicario, "Tracing the Footsteps of Technical Debt in Microservices: A Preliminary Case Study," in International Workshop on Quality in Software Architecture (QUALIFIER), 2023.

RQ₁: What is the evolution trend of Code Technical Debt in a microservice-based software-intensive system?

 $H_0^{1.1}$: Technical Debt evolution does not change in time

 $H_0^{1.2}$: Technical Debt evolution does not present periodic trend

 RQ_2 : Is there a relation between Code Technical Debt evolution and number of microservices?

 \mathbf{H}^2_0 : Technical Debt evolution does not depend on number of microservices

RQ₁: What is the evolution trend of Code Technical Debt in a microservice-based software-intensive system?

 $H_0^{1.1}$: Technical Debt evolution does not change in time

 $H_0^{1.2}$: Technical Debt evolution does not present periodic trend

 \mathbf{RQ}_2 : Is there a relation between Code Technical Debt evolution and number of microservices?

 \mathbf{H}^2_0 : Technical Debt evolution does not depend on number of microservices

Research Questions

RQ₁: What is the evolution trend of Code Technical Debt in a microservice-based software-intensive system?

 $\mathsf{H}_0^{1,1}$: Technical Debt evolution does not change in time

 $\mathsf{H}_0^{1,2}$: Technical Debt evolution does not present periodic trend

 RQ_2 : Is there a relation between Code Technical Debt evolution and number of microservices?

 $\mathbf{H}_{\mathbf{0}}^{2}:$ Technical Debt evolution does not depend on number of microservices

Research Process

	Study Design 00	Dataset Creation ○●○	Dataset Analysis 0000	Results 00000000	Conclusion
Querying					

$$language \in \{Java, Python, C\#, Go, TypeScript, JavaScript\}$$
and
$$\binom{topic \in \{microservice(s), microservice(s)-architecture\}}{or}$$

$$keyword \in \{microservice\}$$

Which languages do you use to develop microservices?

 $^2\mbox{Jetbrains}$ survey (29,269 developers), "The state of developer ecosystem 2022", 2022

	Study Design	Dataset Creation	Dataset Analysis	Results	Conclusion
	00	○○●	0000	00000000	00
Filtering					

	Study Design 00	Dataset Creation 00●	Dataset Analysis 0000	Results 00000000	Conclusion
Filtering					

- \rightarrow 2491 results from query
 - long-living
 - industrial-like development
 - use of Docker
 - real-world MSA or industrial MSA demo
- \rightarrow 46 meet requirements

	Study Design	Dataset Creation	Dataset Analysis	Results	Conclusion
	00	○○●	0000	00000000	00
Filtering					

- \rightarrow 2491 results from query
- \rightarrow 46 meet requirements
 - interesting evolution in microservices:
 - enough microservices
 - not too flat evolution
 - microservices since begin
- ightarrow 15 selected

	Study Design 00	Dataset Creation 00●	Dataset Analysis 0000	Results 00000000	Conclusion
Filtering					

- \rightarrow 2491 results from query
- \rightarrow 46 meet requirements
- ightarrow 15 selected

Problem:	enumeration of microservices in a MSA
State of Art:	unsuitable or inaccurate methods in literature

Problem:	enumeration of microservices in a MSA		
State of Art:	unsuitable or inaccurate methods in literature		
Solution:	improving state of art with a new method		
Approach:			

Problem:	enumeration of microservices in a MSA	
State of Art:	unsuitable or inaccurate methods in literature	
Solution:	improving state of art with a new method	
Approach:	adoption of a <i>lightweight static black-box</i> approad based on parsing of Docker configuration files	

Problem:	enumeration of microservices in a MSA
State of Art:	unsuitable or inaccurate methods in literature
Solution:	improving state of art with a new method
Approach:	adoption of a <i>lightweight static black-box</i> approach based on parsing of Docker configuration files

Effectiveness: high accuracy from preliminary evaluation

Problem:	enumeration of microservices in a MSA	
State of Art:	unsuitable or inaccurate methods in literature	
Solution:	improving state of art with a new method	
Approach:	adoption of a <i>lightweight static black-box</i> approach based on parsing of Docker configuration files	
Effectiveness:	high accuracy from preliminary evaluation	

- **Problem:** enumeration of microservices in a MSA
- **State of Art:** unsuitable or inaccurate methods in literature
- Solution: improving state of art with a new method
- Approach: adoption of a *lightweight static black-box* approach based on parsing of Docker configuration files
- Effectiveness: high accuracy from preliminary evaluation

1 Compilation (only Java and C#)

 \rightarrow Forced to ignore non-blocking error: <1% commits missed

- 2 SonarScanner Analysis
- **③** SonarQube server results
 - ightarrow Technical Debt expressed with SQALE index³

³J.-L. Letouzey, "The SQALE method for evaluating Technical Debt," in 2012 Third International Workshop on Managing Technical Debt (MTD), 2012.

1 Compilation (only Java and C#)

 \rightarrow Forced to ignore non-blocking error: < 1% commits missed

2 SonarScanner Analysis

1 Compilation (only Java and C#)

 \rightarrow Forced to ignore non-blocking error: < 1% commits missed

- 2 SonarScanner Analysis
- SonarQube server results
 - \rightarrow Technical Debt expressed with SQALE index³

³J.-L. Letouzey, "The SQALE method for evaluating Technical Debt," in 2012 Third International Workshop on Managing Technical Debt (MTD), 2012.

 RQ_1 :

- Mann-Kendall test for trend
 - LOESS regression for graphical means analysis of trend
- manual inspection of top TD hotspots
- Ollech&Webel combined test for seasonality
 - STL decomposition of TD evolution

 RQ_2 :

- Cross-Correlation between TD and microservices
 - Granger Causality test for causal relationship
- Cross-Correlation between TD growth rate and microservices

RQ_1 :

- Mann-Kendall test for trend
 - LOESS regression for graphical means analysis of trend
- manual inspection of top TD hotspots
- Ollech&Webel combined test for seasonality
 - STL decomposition of TD evolution

 RQ_2 :

- Cross-Correlation between TD and microservices
 - Granger Causality test for causal relationship
- Cross-Correlation between TD growth rate and microservices

 RQ_1

- Mann-Kendall test for trend
 - LOESS regression for graphical means analysis of trend
- manual inspection of top TD hotspots
- Ollech&Webel combined test for seasonality
 - STL decomposition of TD evolution

*RQ*₂:

- Cross-Correlation between TD and microservices
 - Granger Causality test for causal relationship
- Cross-Correlation between TD growth rate and microservices

General (very) strong trend to grow

# systems	Trend
8	very strong growing
3	strong growing
1	slight growing
1	slight shrinking

 $H_0^{1,1}$: Technical Debt evolution does not change in time \rightarrow **REJECTED**

General (very) strong trend to grow

# systems	Trend
8	very strong growing
3	strong growing
1	slight growing
1	slight shrinking

 $H_0^{1.1}$: Technical Debt evolution does not change in time

\rightarrow **REJECTED**

	Study Design 00	Dataset Creation	Dataset Analysis 0000	Results ●0000000	Conclusion
RQ_1 : tre	nd				

	Study Design 00	Dataset Creation	Dataset Analysis 0000	Results ●0000000	Conclusion
RQ_1 : tree	nd				

Conjecture: passage from development to maintenance phase **Evidences**: reduced commit frequency, notable plateaus

	Study Design 00	Dataset Creation	Dataset Analysis 0000	Results ●0000000	Conclusion
RQ_1 : tre	nd				

RQ_1 : hotspots investigation

Activities that can introduce TD:

 add components (microservices, infrastructural elements, UI, ...) add implementation for policy-service dashboard service initial release

• evolve business logic

make update sequence atomically updated [...]
update product rest api

• add/upgrade dependencies refactor remote catalog/config events to not require dependency [...] disable jaeger

refactoring

refactor comx code refactoring

"Size" of commits: apparently no strong correlation with TD variations

No seasonality in any systems

No seasonality in any systems

$H_0^{1.2}$: Technical Debt evolution does not present periodic trend \rightarrow ACCEPTED

RQ₁ answer (Technical Debt evolution trend in MSA)

- Technical Debt **overall increasing trend in time**, above all in the initial development phase
- Technical Debt variations caused by a variety of activities, first of all adding components and evolving business logic
- Technical Debt presents no seasonality

RQ₂: correlation and causality

General correlation (with phase shift) between TD and microservices

# systems	Correlation
5	very strong
4	strong
4	absent or very weak

Not general causality between TD and microservices

# systems	Granger causality
4	Yes
5	No

 $\boldsymbol{H}_{0}^{2}:$ Technical Debt evolution does not depend on number of microservices

RQ₂: correlation and causality

General correlation (with phase shift) between TD and microservices

# systems	Correlation
5	very strong
4	strong
4	absent or very weak

Not general causality between TD and microservices

# systems	Granger causality
4	Yes
5	No

 $\mathbf{H}_{\mathbf{0}}^{2}$: Technical Debt evolution does not depend on number of microservices

RQ_2 : correlation and causality

General correlation (with phase shift) between TD and microservices

# systems	Correlation
5	very strong
4	strong
4	absent or very weak

Not general causality between TD and microservices

# systems	Granger causality
4	Yes
5	No

 $\mathbf{H}_{\mathbf{0}}^{2}:$ Technical Debt evolution does not depend on number of microservices

*RQ*₂: correlation (growth rate)

Not significant correlation between TD growth rate and microservices

# systems	Cross-Correlation	
3	very strong	
3	strong	
7	absent or very weak	

Conjecture: consequence of adherence to MSA principle of independence

RQ_2 : correlation (growth rate)

Not significant correlation between TD growth rate and microservices

# systems	Cross-Correlation	
3	very strong	
3	strong	
7	absent or very weak	

Conjecture: consequence of adherence to MSA principle of independence

RQ_2 : correlation (growth rate)

Not significant correlation between TD growth rate and microservices

# systems	Cross-Correlation	
3	very strong	
3	strong	
7	absent or very weak	

Conjecture: consequence of adherence to MSA principle of independence

RQ₂ answer (Relation between Technical Debt and microservices)

- Technical Debt and microservices number are generally strongly correlated (with a phase shift)
- In some cases also a causality relation exists
- Addition or removal of a microservice does not impact the growing rate of Technical Debt

Discussion:

- maintaining a consistent level of TD is possible by monitoring it, but its increase might be inevitable as the system grows
- developers should be aware of the potential TD they incur with a variety of development activities
- adherence to MSA principles can help to keep TD compartmentalized within microservices

Future Work:

- systematic evaluation and comparison of microservice detection method
- individual contribution of each microservice
- in-depth systematic analysis of TD hotspots

Discussion:

- maintaining a consistent level of TD is possible by monitoring it, but its increase might be inevitable as the system grows
- developers should be aware of the potential TD they incur with a variety of development activities
- adherence to MSA principles can help to keep TD compartmentalized within microservices

Future Work:

- systematic evaluation and comparison of microservice detection method
- individual contribution of each microservice
- in-depth systematic analysis of TD hotspots

The "Cloud Native GeoServer" case study

Extension⁴ with interview to leading developer just submitted:

- results confirmed also from its point of view
- introduced TD monitoring into its pipeline

"The quantitative analysis was quite **enlightening to me**. I wanted to include a static code analysis for a long time. And maybe it would have never happen [...] if I didn't have this feedback from you".

⁴R. Verdecchia, K. Maggi, L. Scommegna, and E. Vicario, "Technical Debt in Microservices: A Mixed-Method Case Study," *Under review*.

Grazie per l'attenzione

Candidato Relatori Kevin Maggi Dott.Ric. Roberto Verdecchia Prof. Enrico Vicario

> *Correlatore* Dott.Ric. Leonardo Scommegna

Discussion:

- maintaining a consistent level of TD is possible by monitoring it, but its increase might be inevitable as the system grows
- developers should be aware of the potential TD they incur with a variety of development activities
- adherence to MSA principles can help to keep TD compartmentalized within microservices

Future Work:

- systematic evaluation and comparison of microservice detection method
- individual contribution of each microservice
- in-depth systematic analysis of TD hotspots

Mann-Kendall trend test

ID	Kendall's $ au$
<i>S</i> 01, <i>S</i> 02, <i>S</i> 03, <i>S</i> 04, <i>S</i> 07, <i>S</i> 08, <i>S</i> 10, <i>S</i> 13	$ au \geq 0,79$
<i>S</i> 05, <i>S</i> 09, <i>S</i> 12	$0,49\geq au\geq 0,59$
<i>S</i> 14	au=-0,58
<i>S</i> 15	au= 0, 23

Cross-Correlation TD/microservices

TD & ms

Cross-Correlation (S13)

Lag

20

0.2

0.0 -0.1-

-20 -10

Ъ 0.1

ID	Cross-Correlation (at some lag)
<i>S</i> 01, <i>S</i> 02, <i>S</i> 09, <i>S</i> 10, <i>S</i> 15	very strong (>> confidence level)
507, <i>S</i> 12, <i>S</i> 13, <i>S</i> 14	strong (> confidence level)
<i>S</i> 03, <i>S</i> 04, <i>S</i> 05, <i>S</i> 08	absent or very weak (< or $pprox$ confidence level)

Granger Causality test

ID	Granger causality
S01, S07, S10, S15	Yes
502, 503, 509, 512, 513	No

Cross-Correlation TD growth rate/microservices

ID	Cross-Correlation (at some lag)
S07, S09, S10	very strong (>> confidence level)
501, 502, 512	strong (> confidence level)
503, 504, 505, 508, 513, 514, 515	absent or very weak ($<$ or $pprox$ confidence level)

