
Università degli Studi di Firenze
Scuola di Ingegneria - Dipartimento di Ingegneria

dell’Informazione

Tesi di Laurea Magistrale in Ingegneria Informatica

Analysis of the Evolution of Code
Technical Debt in Microservices

Architectures

Candidato
Kevin Maggi

Relatori
Dott.Ric. Roberto Verdecchia
Prof. Enrico Vicario

Correlatore
Dott.Ric. Leonardo Scommegna

Anno Accademico 2022/2023

to my family

and to Elisa

Acknowledgment

First of all, I would like to express my gratitude to my supervisors, Doctor

Roberto Verdecchia and Professor Enrico Vicario, for giving me the opportu-

nity of doing this thesis project, for offering me all the support necessary to

work at my best, and for having transmitted to me even just an infinitesimal

of their knowledge and their skills; I also deserve thanks to my co-supervisor,

Doctor Leonardo Scommegna, for the help given to me in understanding the

theory on which this work is based and in overcoming the difficulties I en-

countered.

Many thanks also to Angelo and Leonardo who, despite the remote meth-

ods that have characterized part of our journey, have always been ready to

offer me their help during the difficulties.

In the end, special thanks to all my family, my girlfriend Elisa and her

family and my friend Matteo for the fundamental moral support that they

have given to me over these years.

Abstract

Context For a long time, and sometimes also nowadays, in litera-

ture it was talked about microservices architectures as a growing emerging

architectural approach; but now this architecture, although still growing, is

widespread both in practice and in academic and industrial interest. Despite

that, to date, no one has conducted a study to investigate how Technical Debt

evolves in software-intensive systems based on such architecture.

Goals This study aims to understand how Technical Debt evolves

in microservices architectures both in terms of overall evolution trend and

related to number of microservices that compose the system.

Method I select a sample of 13 open-source projects, through a multi-

step mixed manual-automated filtering of the results of some queries on

GitHub, with an interesting evolution in terms of number of microservices.

Then I adopt a research method based on repository mining and automated

source code analysis complemented with manual code inspection. The raw

data is in the end statistically analyzed to get the results.

Results From the analysis it is possible to observe that periods of

development without significant Technical Debt variations are present, but

generally the Technical Debt tends to grow in time; moreover the varia-

tions can happen regardless of the development activity performed in a com-

mit, although some are naturally more inclined to introduce Technical Debt.

Technical Debt and number of microservices seem to be correlated in the

Abstract iii

majority of cases, although not always. Furthermore adding (or removing) a

microservice has a similar impact on Technical Debt regardless of the number

of microservices already present.

Conclusions Adherence to microservices architecture principles might

help code quality management by keeping Technical Debt compartmental-

ized within microservices and hence more manageable. Anyway developers

should pay attention to Technical Debt they may introduce, because it can

grow regardless the development activities they conduct. Keeping Techni-

cal Debt not growing during the evolution of a microservices architecture

could be possible, but its growth while the system becomes bigger and more

complex might be inevitable.

Sommario

Contesto A lungo, e talvolta ancora adesso, in letteratura si è parlato

di architetture a microservizi come un approccio architetturale emergente in

crescita; ma oggigiorno questa architettura, sebbene ancora in crescita, è dif-

fusa sia nella pratica che nell’interesse accademico e industriale. Nonostante

ciò, a oggi, nessuno ha condotto uno studio che investigasse come il Technical

Debt evolve nei software-intensive system basati su tale architettura.

Obiettivi Questo studio mira a capire come il Technical Debt evolve

nelle architetture a microservizi sia in termini di tendenza complessiva, sia

in relazione al numero di microservizi che compongono il sistema.

Metodo Ho selezionato un campione di 13 progetti open-source,

tramite un filtraggio multi-step misto manuale-automatizzato dei risultati

di alcune query di GitHub, con un’evoluzione nel numero dei microservizi

interessante. Dopodiché ho adottato un metodo di ricerca basato su re-

postory mining e analisi automatizzata del codice sorgente completato con

un’ispezione manuale del codice. I dati grezzi sono stati infine analizzati

statisticamente per ottenere i risultati.

Risultati Dall’analisi è possibile osservare che sono presenti lunghi

periodi di sviluppo senza variazioni del Technical Debt, ma generalmente

questo tende a crescere nel tempo; inoltre le variazioni possono avvenire

a prescindere dall’attività di sviluppo eseguita nel commit, sebbene alcune

siano naturalmente più inclini a introdurre Technical Debt. Il Technical

Sommario v

Debt e il numero dei microservizi sembrano essere correlati nella maggior

parte dei casi, sebbene non sempre. Infine aggiungere (o rimuovere) un mi-

croservizio ha un impatto simile sul Technical Debt a prescindere dal numero

dei microservizi già presenti.

Conclusioni Aderire ai principi dell’architettura a microservizi può

aiutare a gestire la qualità del codice tenendo il Technical Debt compar-

timentalizzato tra microservizi e quindi più gestibile. Tuttavia gli sviluppa-

tori devono porre attenzione al Technical Debt che potrebbero introdurre,

perché questo può crescere indipendentemente dalle attività di sviluppo

condotte. Mantenere il Technical Debt non crescente durante l’evoluzione di

un’architettura a microservizi potrebbe essere possibile, ma una sua crescita

quando il sistema diventa più grande e complesso potrebbe essere inevitabile.

Contents

Acknowledgment i

Abstract ii

1 Introduction and Motivation 1

2 Related works 4

3 Study Design 7

3.1 Research Goal . 7

3.2 Research Questions . 8

3.3 Research Process . 9

3.3.1 Dataset Definition . 9

3.3.2 Dataset Analysis . 13

4 Microservice detection 19

4.1 State of Art . 19

4.2 Overview on Problem and Solution 21

4.2.1 Problem Formulation 21

4.2.2 Proposed Solution . 22

4.3 Concept . 23

4.3.1 Locating docker-compose 24

4.3.2 Mining docker-compose 27

4.3.3 Detecting microservices 30

4.4 Design . 33

vi

CONTENTS vii

4.4.1 Locating docker-compose 33

4.4.2 Mining docker-compose 36

4.4.3 Detecting microservices 37

4.5 Implementation . 41

4.6 Preliminary Effectiveness Evaluation 42

4.7 Conclusion . 43

4.8 Future Work . 44

5 Experiment Execution 45

5.1 Dataset Definition . 45

5.2 Dataset Analysis . 46

5.2.1 Data Mining . 46

5.2.2 Data Analysis . 48

6 Results 49

6.1 RQ1: TD evolution trend in MSA 49

6.2 RQ2: relation between TD and microservices 52

7 Threats to Validity 57

7.1 Construct Validity . 57

7.2 Internal Validity . 58

7.3 External Validity . 58

7.4 Reliability . 59

8 Discussion 60

9 Conclusion 62

9.1 Future Work . 63

A Dataset 64

B Outcomes 66

CONTENTS viii

B.1 Mann-Kendall trend test . 66

B.2 TD trend . 67

B.3 Hotspot inspection . 72

B.4 Ollech&Webel seasonality test 77

B.5 TD and microservices evolution 78

B.6 TD and microservices correlation 83

B.7 Granger causality test . 85

B.8 TD growth rate and microservices correlation 86

C Replicability 88

Bibliography 89

List of Figures 96

List of Tables 97

Chapter1
Introduction and Motivation

In the last years microservices architectures (MSAs) have become more

and more popular, thanks to their many benefits, including very high scal-

ability and flexibility, and microservices independence along the whole soft-

ware lifecycle: development, testing, deployment and maintenance. Cer-

tainly maintenance phase is one of those with major benefits: indeed it

strongly depends on the software quality of the system and studies [8] show

that the perception of resulting software quality in MSAs is really positive;

this makes the maintenance phase easier to deal with.

Despite many benefits, obviously, MSAs present also challenges, like the

consistency management and the additional effort required for integration

and system testing. Also the potential loss of the bigger architectural pic-

ture has to be mentioned among the difficulties introduced by microservices

approach: developers adopt sub-optimal implementation expedients that,

while providing temporary benefits, tend to make future developing inter-

vention harder. It is exactly these temporary expedients that increase the

Technical Debt (TD) and, as consequence, decrease the software quality (see

Infobox 1.1). Indeed TD is one of the factors in software development that

can lead, if left growing, to lower development speed and higher number of

bugs.

At this point it is natural to ask if, from a software quality perspective,

MSA has more pros or cons with respect to other architectures, in particular

the monolithic one. TD (and in particular Code TD on which this study

focuses) has been treated by literature extensively from years ago [4,5], while

Chapter 1 | Introduction and Motivation 2

microservices are a relatively new phenomenon so the academic interest is

still growing [6, 7]. In light of this it should be surprising that, although

both Code TD and MSA are popular topics in literature, only few studies,

to date, have focused the relation between the two subjects; and also more

amazing that, at the best of my knowledge, no one has ever investigated

quantitatively in depth how Code TD evolves in MSAs.

More on... Technical Debt Infobox 1.1

According to [2], the software engineering community converges on

defining Technical Debt as:

a collection of design or implementation constructs that are expedient

in the short term, but set up a technical context that can make future

changes more costly or impossible; impacting internal system qualities,

primarily maintainability and evolvability.

In literature various types of TD have been introduced [3]: Architec-

tural TD, Code TD, Design TD and much more. Code TD is one of the

more widespread types considered and it refers to aspects found in the

source code that affect negatively its legibility making it more difficult

to be maintained; in other words it regards issues related to bad coding

practices.

In a recent work [1] co-authored with my supervisors and co-supervisor

I have preliminarily considered a case study that shows us its Code TD in-

creasing over time, despite many long more or less constant periods; and

moreover it was possible to see that it increases/decreases same way regard-

less the number of microservices, so linearly with respect to it.

This study aims to extend the investigation to other systems to confirm

or refute the aforementioned preliminary results. Understanding how Code

TD evolves in microservice-based systems is necessary to know how it can be

Chapter 1 | Introduction and Motivation 3

effectively managed in these architectures, to better support the long-term

success of software intensive systems based on such architectural style.

Thesis structure. This work is structured as follows: in Chapter 2 I illus-

trate some studies similar or somewhat related to this one, then in Chapter

3 I move to this study quickly introducing the experiment design based on

Mining Software Repository (MSR), before to go deep in the microservices

detection mechanism designed on purpose in Chapter 4; in Chapters 5 and

6 the experiment execution and results are described; Chapter 7 is about

which threats to validity can have influenced the results and if they can have

effectively affected them significantly; at the end in Chapters 8 and 9 I ex-

plain how this study’s results impact the practice and I sum up the study

and hint some possible future works.

Chapter2
Related works

Assunção et al. [9] conducted a large empirical study on 11 open-source

software (OSS) projects that aimed to understand how microservices evolve

in time; in particular they considered the evolution from 3 different points of

view: technological (technologies that enable the development of microser-

vices), services (business logic of the system) and miscellaneous (aspects

highly specific of the system). As a result they found that rarely the evolu-

tion is service-based, being the vast majority of commits related to technical

changes. Since both technical and services evolutions can have impact to

different extent on the TD, this study is complementary to that one, going

to define a more complete overview.

By considering the literature that instead focuses on TD in MSAs I can

identify, to the best of my knowledge, only few studies.

The works of Lenarduzzi et al. [10, 11] might potentially be the most

similar to this one. They investigated the effect of migration from monolithic

to microservices architecture on TD on two study cases obtaining opposite

results: while in one of them the TD after the migration grows faster, in

the other the increase is slower. Anyway both the studies agree on the fact

that TD in each microservice, although an initial very fast growth, tends

to stabilize and to grow slower than the overall system. This study anyway

differs from these two for at least two reasons: (i) I do not focus on migration

from monolith to microservices and (ii) I consider a large number of study

cases (some of them also bigger than the small two, respectively 4 and 5

microservices, considered by Lenarduzzi et al.).

Chapter 2 | Related works 5

By inspecting the other related literature, TD in microservices seems to

be investigated primarily from a qualitative point of view.

Toledo et al. [12] investigated in a multiple case study the Architectural

TD (ATD) in microservices from a qualitative point of view. The results

of 25 interviews identify ATD issues, their negative impact and common

solutions to repay them. In a similar work by Toledo et al. [13] ATD in

the communication layer was considered, through a qualitative analysis of

documents and interviews related to a big case study. These two studies

differ from this one both for the subject, ATD instead of Code TD, and for

the research method, qualitative instead of quantitative.

Bogner et al. [14] studied how the sustainable evolution of 14 microservice-

based systems was ensured, conducting 17 semi-structured interviews. The

main focus was not on TD (differently from this work), but it emerges to

be one of the main issues that undermine sustainable evolution. More-

over, albeit some tool-based DevOps processes were mentioned, the study

was based on a qualitative research method. Bogner et al. in a different

work [15] asked to 60 software professionals how TD can be limited through

maintainability assurance. Results indicate that using systematic techniques

benefits software maintainability, but often in practice these tools are not

used. Also this study, again, adopts a qualitative approach and it does not

account the TD evolution.

A more systematic scrutiny of the literature on TD in microservices was

conducted by Villa et al. [16]. Basing on the analysis of the 12 primary

studies they selected, the intuition on which this research is based, namely

the absence of studies focusing the evolution of TD in microservice-based

systems, is somehow confirmed. Moreover, from their results, Architectural

TD, Code TD and Design TD appear to be the most common types of TD

reported in microservices contexts. Such result reflects the general trend

observed in developer discussion as highlighted by Kozanidis et al. [17], that

Chapter 2 | Related works 6

obtains the same result from the analysis of TD related questions on Stack

Overflow. This result provides further support to the focus of this work, that

is the evolution of Code TD in MSAs.

Chapter3
Study Design

In this Chapter I document the research design of the study, in terms

of Research Goal (Section 3.1), Research Questions (Section 3.2) and in the

end Research Process (Section 3.3). Experiment Execution, instead, will be

treated in chapter 5.

3.1 Research Goal

The goal of this study is to conduct an investigation into the evolution of

Code TD in software-intensive systems based on MSA. By considering the

Goal-Question-Metric approach of Basili et al. [18], the goal of this study

can be formulated as follows:

Analyze software evolution

For the purpose of studying trends and characteristics

With respect to Code Technical Debt

From the viewpoint of software engineering researchers

In the context of microservice-based software-intensive systems.

The choice of focusing on Code TD rather than other types, like ATD,

is guided by multiple factors: (i) Code TD is one of the most frequent types

of TD appearing in microservice-based systems [16], (ii) differently from

other types of TD, Code TD is supported by a vast range of consolidated

tools, largely used both in academic research and industrial practice [19] and

(iii) for the previous reason, it allows this study to consider an heterogeneous

set of experimental objects.

Chapter 3 | Study Design 8

3.2 Research Questions

Basing on the just formulated goal of the work it is possible to derive

the main Research Question (RQ) on which this study is based, that can be

formulated as follows:

RQ: How does Code Technical Debt evolve in a microservice-based

software-intensive system?

This RQ covers the overall goal of the study, expressing the intent to

study the evolution of Code TD in MSA. In order to be more systematic,

it is possible to decompose it into sub-RQs, each one considering one of the

different facets of TD evolution this research aims to investigate. More specif-

ically it has been decomposed into the two following RQs, each associated

to one or more hypothesis testing.

RQ1: What is the evolution trend of Code Technical Debt in a

microservice-based software-intensive system?

H1.1
0 : TD evolution does not change in time

H1.1
a : TD evolution changes in time

H1.2
0 : TD evolution does not present periodic trend

H1.2
a : TD evolution presents periodic trend

With RQ1 I aim to understand the overall evolution trend of TD in

microservice-based systems, e.g. if it is constant through the evolution of

software system, if it shows a growing trend or if a periodic trend can be

noted. It comes naturally to conjecture an increasing trend (as resulted

in [10, 11], although in different measures) with appreciable periodic trend

(i.e. seasonal periods where developers are more/less prone to incur in TD,

like before/after holidays).

Chapter 3 | Study Design 9

RQ2: Is there a relation between Code Technical Debt evolution and

number of microservices?

H2
0: TD evolution does not depend on number of microservices

H2
a: TD evolution depends on number of microservices

With RQ2 I aim to understand if there is a relation between the evolution

of TD and the number of microservices that compose the system. About this

I could conjecture that, due to sub-optimal implementation choice, as the

number of microservices grows, TD grows at an higher rate (i.e. TD is in

superlinear or even exponential relation with the number of microservices).

3.3 Research Process

In this section I go deeper into the description of the research process

followed to answer to the RQs. I describe which dataset has been selected,

how it has been analyzed and how, with the results, it is possible to answer

to the RQs.

3.3.1 Dataset Definition

As dataset to be analyzed I want a substantial number of reposito-

ries of microservice-based software-intensive systems characterized by a real

industrial-like development process, so real systems or industrial demos (no

toy examples or exercise-in-style demos).

During a preliminary discovery phase a lack of this type of OSS projects

turned out, clearly because most companies do not make their products open-

source; this is also the reason why I had to accept also industrial demos,

surely more widespread.

In literature many authors use the dataset provided by Rahman et al. [20]

and extended by Taibi [48]. Anyway most of the projects collected do not

meet the aforementioned requirements.

Chapter 3 | Study Design 10

In the end it has been decided to define a custom dataset by querying

GitHub1 and filtering the results to select the “most interesting” from the

point of view of the evolution, like Figure 3.1 shows.

Figure 3.1: Dataset creation process overview

Queries

In 2022, according to the “The State of Developer Ecosystem” annual sur-

vey conducted by JetBrains [49], the most frequent programming languages

in microservices development come out to be: Java, that is by far the most

used, Python, Go, C#, TypeScript and JavaScript. Therefore it has been

decided to focus the research on these 6 languages.

The repositories retrieved2 by queries, pre-filtered by language, have been

selected by:

• topic: those with “microservice(s)-architecture” or “microservice(s)” as

topic (with at least 10 stars to avoid the most insignificant ones) or

• keyword: those containing the “microservice” keyword (with at least

100 stars to avoid the most insignificant ones).

The resulting composite query can be formulated as follows:

1www.github.com
2At the date of 11/09/2023

https://github.com

Chapter 3 | Study Design 11

language ∈ {Java, Python, C#, Go, TypeScript, JavaScript} ∧((
topic ∈ {microservices, microservice, microservices-architecture,

microservice-architecture} ∧ stars ≥ 10
)
∨(

keyword ∈ {microservice} ∧ stars ≥ 100
))

Filter Criteria

The results need to be filtered3 to obtain repositories that meet the ty-

pology requirements and to discard the ones surely not interesting as case

study. Before to discern manually real industrial cases and industrial demo

cases, reducing the number of results with some automated filter is essential;

this is done by the first 4 filter steps with the following Filter Criteria:

FC1: the repo must have a docker-compose file (with a standard name).

It is essential to be able to detect and count microservices, as I will

illustrate in Chapter 4.

The docker-compose file should be present in all commits, anyway

at this step, in order not to check commit-by-commit all the reposi-

tories resulting from querying, I make a first rough selection looking

at only the last one;

FC2: the repo must have at least 250 commits.

This criterion simply discards repositories not representative for

long-lived software applications;

FC3: the repo must have at least 2 contributors.

This criterion discards repositories not characterized by an industrial-

like development (trivially practitioners’ exercise-in-style).

It has been decided to count bots as real contributors, since some

of them are able to modify code, potentially introducing TD;

FC4: the repo must have a docker-compose file for at least 2⁄3 of the com-

mits and in any case at least 250 commits.
3at the date of 11/09/2023, including commits until 08/09/2023 (included)

Chapter 3 | Study Design 12

This aspect has already been discussed with FC1 and FC2, but now

the remaining results should be few enough to do a commit-wise

check with a reasonable effort.

At this point the results should be few enough to make a manual check on

the nature of repositories to discard all the false positives in terms of archi-

tecture (systems not MSAs) and typology (toy examples, complex exercise-

in-style demos, etc.):

FC5: the repo must present a MSA and must be a real industrial system

or an industrial demo.

The check has to be done manually by examining4 the description,

the README file and, in absence of clear clues, the artifacts like

docker-compose, structure of the code, etc.

Complete industrial MSA, starter kits, templates and big-industry

related projects are also considered acceptable, while single mi-

croservices, MSA components, examples from books/sites, libraries,

development frameworks and platforms are not.

Last filtering step is the most fine-grained because it considers the inter-

estingness of the evolution in terms of number of microservices.

FC6: the repo must have an interesting evolution in the number of mi-

croservices.

This criterion has been formally formulated as follows:

FC6.1: the repo must have at least 5 microservices at some point

in its history.

This criterion is essential to discard repositories not rep-

resentative for complex industrial MSA systems;

4All the repositories have been inspected in the state they were as of 15/09/2023

Chapter 3 | Study Design 13

FC6.2: the repo must not have a flat evolution period longer than
1⁄2 of its history and in any case more than 750 commits.

This criterion serves to discard repositories that do not

evolve at all or at least that have already reached their

maturity for too long;

FC6.3: the repo must not have no microservices for more than 3⁄10

of its history.

Also this criterion serves to discard repositories with poor

evolution or that have been migrated to microservices

from another architecture (i.e. monolithic) during their

development;

FC6.4: the repo must not return to no microservices more than

one time every 175 commits.

This criterion seems quite strange, but it is essential to

avoid repositories with an exceptionally stormy develop-

ment: indeed few repositories, above all in their initial

phase, tend to be refactored so frequently (with some com-

mits with no detected microservices between the starting

form and the final one) that it is impossible to appreciate

the evolution.

All the parameters’ values set in this last group of Filter Criteria have

been found empirically, tuning them in order to find the best filtering level

that allows to obtain an appropriate number of resultant repositories (ap-

proximately between 10 and 20).

3.3.2 Dataset Analysis

Regarding the analysis of the dataset, it is described in Figure 3.2 and it

consists, for each repository, of an iteration on all its commits and, for each

commit, in counting microservices and measuring the TD.

Chapter 3 | Study Design 14

All the analysis data is collected before to proceed to their analysis for

answering to the RQs.

Figure 3.2: Dataset analysis process overview

Phase 1: Repository cloning

Of course the first step simply consists in cloning the repository from

GitHub.

Phase 2: Commit checkout

The second step is to checkout the commit to be analyzed. The commits

taken into account are those of the main branch (and of secondary branches

already merged into the main, as highlighted by Kovalenko et al. [21]) lin-

earized in temporal order. During this phase some additional version control

related data is collected to enable future deeper investigation of the dataset

with no need of executing again the collection phase. Among these data the

main ones are: committer, author, date, commit hash and above all par-

ent(s) hash (so the graph topology information missed due to linearization

are not completely lost).

Phase 3: Microservices detection

Before to analyze the TD, the microservices composing the system are

detected and counted. This process is based on an analysis of the Docker

Chapter 3 | Study Design 15

configuration files, docker-compose and Dockerfile. In Chapter 4 this new

method, designed on purpose for this study, is presented in details.

Phase 4: SonarQube™ analysis

Last data to collect are those related to the code quality analysis by

Sonar™ tool suite5, one of the most known tool for the purpose [19].

SonarScanner examines files and SonarQube analyzes raw data to com-

pute metrics. The main metric of interest is obviously the SQALE index,

that measures the TD in minutes needed to pay it [22], but also other met-

rics are collected in order to open to future further investigations on the

same dataset (project size in terms of files, lines, lines of code and cognitive

complexity; issues, bugs, code smells and vulnerabilities).

The measurements consider the whole repositories, analyzing all the lan-

guages supported by SonarQube, and not only the main one. For some

languages, namely Java and C#, SonarScanner requires compiled code. For

this, the projects containing these languages needed special attention: in

the Java case, at first the projects are built using the build automation tool

used by the author (Maven™6 or Gradle™7 or their wrappers if available),

and then they are analyzed by SonarScanner for Maven and SonarScanner

for Gradle; in the C# case, the projects are built and analyzed using the

standard procedure for SonarScanner for .NET. In these two cases, based on

how the specific SonarScanner versions work, the analyzed code (of any of

the languages) is just the one included by the building configuration files.

Data Analysis

As final step of the research process, the data collected through dataset

analysis is analyzed to answer the RQs.

5www.sonarsource.com
6www.maven.apache.org
7www.gradle.org

https://www.sonarsource.com/
https://maven.apache.org/
https://gradle.org/

Chapter 3 | Study Design 16

To answer RQ1 various tests and investigations are conducted on TD

evolution, trend and seasonality:

• first of all an overall trend presence is tested through the Mann-Kendall

test [23], a non-parametric test based on Kendall’s rank correlation

coefficient (Kendall’s τ) that looks for the increasing or decreasing

trend of a time series, whose implementation is available as open-source

R library8;

• being that commits are irregularly-spaced, while next steps require a

regularly-spaced time series, this gap is filled transforming the series

by (i) keeping only the last commit of each day and (ii) introducing

fictitious findings on missing days with linear interpolation;

• then the trend is obtained, for graphical means analysis, by applying

LOESS regression [24], that basically smooths the TD evolution;

• to gain further insights into the “hotspots” of TD time series (i.e. com-

mits characterized by the most outlier values in TD measurement), the

corresponding commits are manually scrutinized: commits are ordered

by absolute value of introduced (or paid back) TD and top 10 commits’

content is analyzed;

• in the end the seasonality is analyzed. Since both the following steps

require that at least 2 periods (in this case years) of data are collected,

systems with a shorter life are not considered for this analysis. The

investigation comprehends:

– a seasonality test, using the combined method presented by Ollech

and Webel [25] (basically a QS test and a Kruskall-Wallis test)

and made available as open-source R library9;

8www.rdocumentation.org/packages/Kendall/versions/2.2/topics/MannKendall
9www.rdocumentation.org/packages/seastests/versions/0.15.4/topics/combined_test

https://www.rdocumentation.org/packages/Kendall/versions/2.2/topics/MannKendall
https://www.rdocumentation.org/packages/seastests/versions/0.15.4/topics/combined_test

Chapter 3 | Study Design 17

– if a seasonality is found, a decomposition of TD evolution into its

trend, seasonal and irregular components. For this I adopt the

STL algorithm [26] since it does not assume a time series distribu-

tion and it was successfully used in previous software engineering

studies [27,28]; moreover an open-source implementation is avail-

able as an R library10. The resulting trend and seasonal compo-

nents are then inspected qualitatively via graphical means. The

interpolation tends to slightly smooth the seasonality trend, so

further considerations about this choice are discussed in Chapter

7.

Before to move on, data is cleaned by removing those isolated commits

that, due to a bad formatted docker-compose, count incorrectly no microser-

vices; in this way following analysis are not influenced by them.

Indeed, to answer RQ2, potential correlation and causation between num-

ber of microservices and TD evolution are examined:

• the first aspect to clarify is if a correlation exists between the two time

series and this is done with Cross-Correlation Function (CCF) [29–31],

that tests correlation between the two time series at different lags (i.e.

offset by some commits forwards and backwards);

• if correlation is present at negative lags (i.e. TD time series corre-

lates with delayed microservices time series), then, to determine if mi-

croservices number changes cause an increment/decrement of TD, the

Granger Causality test [32] is conducted. The optimal lag order is

calculated by leveraging the Akaike Information Criterion [33];

• in the end, potential correlation between the derivative of TD time

series and the microservices number is analyzed to understand if the

10www.rdocumentation.org/packages/stats/versions/3.6.2/topics/stl

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/stl

Chapter 3 | Study Design 18

growth speed of TD depends on the number of microservices. Also in

this case CCF is exploited.

Since Granger Causality test requires stationary data and CCF can give

spurious results with non-stationary series [34], before all the steps, this

assumption is tested with the Augmented Dickey-Fuller test [35] and in case

of non-stationarity, I make data stationary by differencing them.

The choice of studying correlation (and causation consequently) at differ-

ent lags comes due to the fact that a microservice is detected at its insertion

as Docker container, but this moment not necessarily coincides with the

start of its development. This could have introduced a delay between the

TD time series and the number of microservices one (or even the opposite,

i.e. the insertion as Docker container is done after the development of the

microservice).

Chapter4
Microservice detection

What I have described so far implies the ability of getting the number of

microservices present in a MSA in an automatic mode and starting from the

artifact in the repository, i.e. the configuration files and every other machine

readable resource included in the repository, but surely not the documenta-

tion of the README file, which often, but not always, comprehends a list

of the services.

4.1 State of Art

This assumption is not so trivial, because that of recovering the list of

microservices in a MSA is still an open problem and it is not trivial itself.

To the best of my knowledge, no one has ever tried to set up a method

only for the detection of microservices; usually the aim has been that of

recover the architecture in its (almost-)entirety (Software Architecture Re-

covery), i.e. also dependencies and/or other relations between microservices

and perhaps also infrastructural components; so for this reason almost all

methods found in literature are dynamic or hybrid static-dynamic. Obvi-

ously getting the number of microservices from the entire architecture is

possible, but the effort of a dynamic method, understood both as time and

computational effort, is excessive just for enumerating them.

Baresi et al. [36], facing a study similar to this one in Empirical Software

Engineering, have set up a static black-box method that exploits the infor-

mation in the docker-compose file to get the microservices. They discern the

Chapter 4 | Microservice detection 20

microservices from the infrastructural components by looking at the con-

tainer’s image name and looking for the presence of common infrastructural

components’ names (i.e. databases, monitors, gateways, service discoveries,

buses and servers). The blacklists cannot never be exhaustive, so false pos-

itives are quite frequents; moreover in some particular cases, the repository

can contain one of the blacklisted words in its name and so the microser-

vices’ images, causing the methods to fail with no detected microservices.

Also the choice of docker-compose is rudimentary, because it chooses the

first file named docker-compose.yml, but: (i) it is not for sure that it is

the one which lists the microservices and moreover the docker-compose can

have custom names (trivially it could have the other version of extension),

so basically in some repositories this method is useless; (ii) in case of mul-

tiple docker-composes choosing the first one that is found by the research

brings in some cases to different selection in consecutive commits, causing

the undesired effect that some commits are evaluated on a docker-compose

while other commits on another (although the first is still present).

Soldani et al. [38] [37] have developed a prototype tool named µminer

that implements a hybrid static-dynamic method for deriving the topology

graph model of the architecture of a microservice-based applications, start-

ing only from their deployment, specifically the manifest file of Kubernetes.

After a first step that mines information from the aforementioned file, the

application is run in order to collect interactions between components by

sniffing the network. As final step the graph is refined analyzing the ex-

changed packets.

Alshuqayran et al. [39] in their hybrid static-dynamic method have

adopted a white-box approach; indeed in the static phase they gather

information about software artifacts extracting them not only from the

docker-composes and Dockerfiles but also from Maven POM files and even

from YAML configurations, Java source code and documentation. After

Chapter 4 | Microservice detection 21

having reverse engineered the code to obtain the UML class diagram, other

data is collected by running the application; then all the information are

processed by various steps that aim to determine the architectural concepts

and the microservices are identified, and at the end some mapping rules

associate them to implementation artifacts.

Rademacher et al. [40] also have adopted a white-box method, although

static, where they gather information from docker-compose, Dockerfiles and

source code, trying to identifying microservices from Java classes that employ

annotations for web-based data-binding and from Dockerfile base images. All

the data is then analyzed with also configuration files and interactions listed

in the docker-compose to reconstruct the application’s model.

Granchelli et al. [41] have developed a tool named MicroART that imple-

ments an hybrid static-dynamic semi-automatic method. A GitHub analyzer

collects information from docker-compose and Dockerfiles, then a Docker

analyzer collects runtime data in order to know the interactions between

microservices. Before the final step, that aims to refine the reconstructed

model, an architect is required to identify and mark the service discovery

service.

4.2 Overview on Problem and Solution

4.2.1 Problem Formulation

Summarizing, the problem is the following:

Given a MSA project determine of how many and of which microser-

vices is made.

The solution should be a method that is:

• static, i.e. does not run the code, in order to be extremely lightweight,

and

Chapter 4 | Microservice detection 22

• black-box, i.e. does not use the source code, in order to be language

independent.

4.2.2 Proposed Solution

The solution I propose exploits Docker1 configurations, since it is the

most common containerization platform. So the artifacts I exploit are the

configuration files of Docker, the Compose files (from here referred as docker-

composes, as they are better known) and the Dockerfiles.

More on... docker-compose Infobox 4.1

The docker-compose, as said in the official documentation, “is used to

configure your Docker application’s services, networks, volumes, and

more”. It defines:

• services (i.e. containers) with their names, the images they run

and/or the build information, the running configurations, the en-

vironment variables, the networks they are attached to, the ports

they expose, the volumes they can have access to and many other

technical data;

• networks that allow services to communicate with each other;

• volumes that store persistent data and that can be reused by mul-

tiple containers;

• other technical configurations.

More on... Dockerfile Infobox 4.2

The Dockerfile, again as said in the official documentation, “contains all

the commands a user could call on the command line to assemble an

image”. It is basically the recipe for building an image starting from a

base image specifying:
continue...

1www.docker.com

https://www.docker.com/

Chapter 4 | Microservice detection 23

• which files to copy in the image’s filesystem;

• which ports to expose;

• which commands to execute when building the image;

• which instruction set to execute when running the image.

...continued

The docker-compose can be useful to collect information about the con-

tainers that form the application, both microservices and infrastructural

components. The docker-compose (as explained in Infobox 4.1) contains a

lot of information about the containers, however in order to only get a list of

microservices only a subset of them could be useful, as described in following

sections.

The Dockerfile can be used to understand how a container was built and,

as consequence, if it is a microservice or an infrastructural component. The

Dockerfile (as explained in Infobox 4.2) contains a lot of information, but also

in this case only some of these information can help to detect microservices

and they will be described in next sections.

Given that these are the only processed artifacts and that they are

scanned for information statically, this method is black-box and static.

4.3 Concept

My solution is based on 3 macro-steps as illustrated in Figure 4.1:

1. first of all locating the docker-compose is required: this means not

only to find where it is in the filesystem (that would be a relatively

easy task), but also which docker-compose to select, because there can

be more than one docker-compose in a project;

2. once it has been selected, the docker-compose should be mined,

in order to extract a list of containers that it runs and

Chapter 4 | Microservice detection 24

3. in the end discerning microservices from infrastructural com-

ponents is necessary, and this could be done thanks to the information

extracted in the previous step and the Dockerfiles.

Now it will be shown each phase with a description of how it has been

divided into subtasks, which are the problematic aspects and how they have

been conceptually addressed; a more technical overview, with pseudocode,

will be presented in the next section.

Figure 4.1: Microservices detection workflow

4.3.1 Locating docker-compose

The research and selection phase of the docker-compose is only one of

the difficulties of the whole method, but it is the first that shows up. Both

the sub-phases are not easy to perform.

The root cause of all the difficulties is the non-uniqueness of the docker-

compose (and so the capability of having non-fixed names to differentiate

them).

In a project there can be multiple docker-composes for various reasons:

• some docker-composes are “duplicated” because they have differ-

ent aims, for example there can be docker-compose.dev, docker-

compose.test and docker-compose.prod that respectively refer to

the one to be used during the development, the one for the testing

phase and the one for the production;

Chapter 4 | Microservice detection 25

• some docker-composes have complementary purposes, that is they

list different groups of containers that all together form the applica-

tion, for example a docker-compose.microservices and a docker-

compose.infrastructure that deal respectively the microservices and

the infrastructural components;

• some docker-composes are partials, in the meaning that they are used

only in particular cases to override some containers’ configurations de-

fined in other docker-composes (often these docker-composes do not

even specify image or build information).

And all these cases are orthogonal, so it is also possible to deal with a

combination of them.

Then the docker-composes can be in any directory, because there is not

a standard one documented and neither a de-facto standard one used in

practice. Many put it in the base directory of the project or in the code

directory, as many put it in other directories different one from another.

A controversial corner-case that I met during the preliminary manual in-

spection of a certain number of repositories, with the aim of collect enough

experience on various practices, is that of defining a docker-compose per mi-

croservice. This practice, although not very widespread in absolute terms, is

more widespread than one might expect, since it is a totally useless practice:

indeed the docker-compose serves to run and configure multiple containers

correctly configured to work all together. In case of single container, it can

be configured directly from the run command. Probably the goal of who

follows this practice is that of having one single command (docker com-

pose up) that works indiscriminately for all the microservices, thus avoiding

individual documentation of commands.

The only not-so-bad news regards the filename of docker-composes. In-

deed, although it is completely free, two standard names exist: docker-

compose and compose (to put in Cartesian product with the two versions of

Chapter 4 | Microservice detection 26

YAML2 extension: .yaml and .yml). In case of multiple docker-composes

the documentation suggests to add a suffix to the standard names, and in

fact this is the most common practice, but it is quite widespread also the

use of a prefix. Basing on my experience, the cases of completely custom

filenames are very few.

Following each step of this phase (shown shortly in Figure 4.2) is treated

individually, overviewing how it is useful to address the just mentioned diffi-

culties. A more detailed discussion on how each solution can be technically

performed will be at Section 4.4.

Figure 4.2: Phase 1 workflow: docker-compose location

docker-composes research

The research phase is that with the easiest solution: searching the docker-

composes by extension is not feasible because the YAML format is a common

configuration format used by many services and neither by filename because

not fixed; however, as previously explained, the almost-standard names (i.e.

the two standard names with the two versions of extension) can be searched

admitting also prefixes and suffixes.

docker-compose selection

The selection phase is by far the most complex and difficult. The aim

of this phase is to select the right docker-compose among all those present,

2www.yaml.org

https://yaml.org/

Chapter 4 | Microservice detection 27

where “right” means the one that lists all the microservices.

This aim represents also the renounce to those cases with a docker-

compose per microservice: indeed this cases can mislead a selection algo-

rithm because neither just one of these docker-composes nor all together

cannot give any information about the overview on architecture (indeed it

is not obvious that for the correct run of the application all the present

docker-composes should be invoked, e.g. some of them can refer not to ap-

plications components but to developing or testing utilities, although they

are indistinguishable from the real microservices).

In conclusion the idea for addressing this phase is that of filtering the

collected docker-composes in order to discard those considered unacceptable,

according to some rules, and then being able to select from the remain results

the most suitable one (or better the most likely right one). This can be done

by defining some empirical rules to assign a priority to each of them based on

path and filename; after that just by selecting that with the highest priority.

4.3.2 Mining docker-compose

Also the mining of docker-compose is not trivial, but luckily it is not

necessary to resort to any heuristic, since it is sufficient to follow the official

documentation of Docker Compose3.

The information that can help in microservices detection is:

• the list of Docker services that the docker-compose runs on invoca-

tion and

• for each of them:

– the image of the service, i.e. the image run by the container that

backs the service;

– when present, the build of the image (formed by a Dockerfile and

a context), and
3https://docs.docker.com/compose/

https://docs.docker.com/compose/

Chapter 4 | Microservice detection 28

– the name of the container that backs the service.

Other information is more related to the technical aspect of configuration.

However it is not obvious that all these data are coded in plain. Indeed

looking at the containers that form the composite one at runtime it is pos-

sible to have some different or additional data, that will be explained soon.

Anyway getting the information as they are at runtime is perfectly possible

thanks to the fact that Docker documentation fully illustrates how Docker

Compose works. These are the mechanisms that can resolve data at runtime:

• environment variables: values in the docker-compose can be set

using variables that will be interpolated at runtime basing on the value

of environment variables set in the .env file (or a custom env file

specified as argument at invoking time or as attribute in case of docker-

compose inclusion) or from the shell;

• inclusions: a docker-compose can declare dependency on another

docker-compose by “including” it. Inclusions apply recursively and at

runtime, once the included docker-compose is loaded, its content is

copied in the docker-compose that includes;

• extensions: a service listed by a docker-compose can extend another

service (from the same docker-compose, an included one or any external

one); in this case the service that extends inherits all the configurations

(and it can then override them) recursively up to the base service.

Resolving these cases as Docker Compose does at runtime, and as it

is officially documented, allows to get all the information4just without the

overhead of running the composite container (i.e. the entire application).

In Figure 4.3 an overview of this phase and following a brief description

of each step. A more detailed overview will be discussed at Section 4.4.
4To be clear: “all the information” means all the information recoverable from coded

settings, e.g. if an environment variable has to be set from command line when invoking

Docker Compose, this data cannot be recovered for obvious reasons.

Chapter 4 | Microservice detection 29

Figure 4.3: Phase 2 workflow: docker-compose mining

Environment variables interpolation

The first step is obviously that of resolving the variables, following the

documented syntax, in order to have all the values in plain and this has to

be done for the selected docker-compose as well for the recursively included

ones. The environment variables values are taken from the default .env file

(when it exists) for the selected docker-compose, while for the included ones

from the specified env file (or the default .env if not specified).

docker-composes inclusion

This is basically the recursive step: if there is some included docker-

compose, it should be recursively mined to obtain its data. Since, as already

said, these data can be used in the including docker-compose, a head recur-

sion is needed. All the arguments defining inclusion should be taken into

account to correctly interpret the inclusion, as explained in the official doc-

umentation.

Services collection

This step represents the base step of recursion: when there is no included

docker-compose or when they are all already processed, then collecting the

services listed in the current docker-compose is possible. In this step the

Chapter 4 | Microservice detection 30

services extensions, if present, have to be unfolded recursively up to the

base container (processing services either from an included docker-compose,

so extended service has already been collected, or from an external one,

looking for it in the referenced docker-compose).

The information inherited and the current ones specified should be

merged, again as described in the official documentation, in order to per-

fectly replicate the behavior of Docker Compose.

At this point the information is made explicit.

Services mining

Now that all the services are collected they can be mined to take desired

information from each of them, that as already said are: the image’s name,

the container’s name (if specified, otherwise in its place the service’s name, as

officially documented) and, whenever it is present, the build (i.e. a Dockerfile

and if present a context).

These are all the details needed for detecting microservices in the last

phase.

4.3.3 Detecting microservices

This phase is the real core of this method. Starting from the data just

collected, that just to remember are the image, the container name and the

build, the aim is to discern real microservices from infrastructural compo-

nents.

Notice that there are two main cases with a huge difference:

• in the first case the Docker service specifies the build: this is the easy

case, indeed the Dockerfile that generates the image gives much more

information than the image alone;

• in the other case, when there is not a specified build (i.e. developers

have a separate workflow that builds the image and deploys it in a

Chapter 4 | Microservice detection 31

image registry and the docker-compose pulls it from there), the only

hope to have additional information for a precise detection is that

of trying to match the service to one of the Dockerfiles present in

the repository. And this task has to be accomplished basing only on

image’s and container’s names.

Doing what just illustrated without any additional precaution leads to,

more or less, the same results as a blacklisting approach based on images’

names. Indeed it is absolutely not true that a Dockerfile corresponds to a

microservice.

There are a lot of cases where developers have another not-so-virtuous

habit: often Dockerfile is used to initialize or configure an infrastructural

component’s container (almost always a database). In other words instead

of using the base image of the third-party component and configuring it

through the docker-compose, they define and build a new image from the

base one already configured and they use it in the docker-compose without

configuration; from this the need of discarding this type of Dockerfiles (in

order to prevent a match with a service).

Following each step of this phase (illustrated in Figure 4.4) is treated

individually, showing how they, all together, can address the described diffi-

culties. For more details, the Section 4.4 discusses how they are technically

performed.

Figure 4.4: Phase 3 workflow: detecting microservices

Chapter 4 | Microservice detection 32

Dockerfiles collection

Also the Dockerfile, as docker-compose does, can have a custom filename,

but in its case practically everyone uses the standard name (possibly pre-

ceded or succeeded by an affix). And being that the Dockerfile does not have

an extension, there is not any hope to recover those really few with a totally

custom name.

So it is sufficient to search for files that contain “Dockerfile” in the name

and to discard those false positives with an extension (often script files with

hard-coded parameters to be run to invoke the build of the image).

As last step the Dockerfiles that are related to third-party vendor or

those for example and demo purposes should be discarded to avoid easily

avoidable false positives.

Microservices discernment

At this point almost everything is ready for the final step. The only

aspect that remains to define is how, in case a service does not specify a

build, matching it to a Dockerfile basing on its image’s and container’s names

is possible.

Observing a large number of repositories it is possible to realize that very

often these names, as is normal, contain the names of microservices they refer

to. And the microservices’ names also appear, obviously, sooner or later in

the path of the directories containing source code and/or Dockerfile of each

of them.

In conclusion the idea behind the match method is that of recover the

name of the microservice from the data available and look for a match in

the set of collected Dockerfiles: if a match exists and it is unique, then is

(almost) possible to conclude that a microservice has been detected.

The very last thing to do, both in case of a referenced Dockerfile or a

matched one, is that of checking if the Dockerfile really define a microservice

Chapter 4 | Microservice detection 33

and it is not only for configuration/initialization. This can be done by looking

at what type of files it copies in the image’s filesystem: in case of configu-

ration or script files only it should belong to an infrastructural component,

otherwise if it copies some user code it should belong to a microservice.

4.4 Design

Now that the overview of the three phases has been presented, more tech-

nical details on how they work will be treated in the following subsections.

For each step of the phases which aspects can introduce false positives and

false negatives will be highlighted, in order to have a clear view of how the

entire method’s results can be influenced.

All the rules and parameters that will show up soon are tuned empirically

basing on the observation of a large number of microservices architectures.

The design phase is the result of multiple rounds of generalization: the rules

have been made gradually more generic in order to apply to a greater number

of repositories (they have never been made more specific in order to apply to

corner cases, indeed some of them still remain uncovered by this method).

4.4.1 Locating docker-compose

The process followed by this phase is shown at high level in Algorithm

4.1. Following all the tasks of which is composed are illustrated in details.

Algorithm 4.1 docker-compose location
Input: repository
Output: selected docker-compose
1: Look for docker-composes
2: Discard docker-composes with “non-neutral” folder in path
3: Group docker-composes by path
4: Order groups by path preference
5: for each group of sibling docker-composes

continue...

Chapter 4 | Microservice detection 34

6: if a docker-compose without affixes exists
7: return it
8: else
9: Discard docker-composes with “non-neutral” affixes

10: Discard docker-composes with undesired affixes
11: Order docker-composes by affix priority
12: if some docker-composes still exist
13: if only one docker-compose has the highest priority
14: return it
15: else
16: return that with the shortest filename

...continued

Looking for docker-composes

This task is completed simply by searching all files named

docker-compose.yaml , *docker-compose*.yml ,

compose.yaml , *compose*.yml .

This task can introduce false negatives, i.e. those docker-composes that

have a totally custom name, anyway these cases are very few.

Discard docker-composes with “non-neutral” folder in path

This task aims to discard those docker-composes relative to single microser-

vices. It discards all the docker-composes whose path contains at least a folder

considered “non-neutral”, where the neutral ones are listed below and are re-

ferred mainly to Docker, code directory, software lifecycle phases and generi-

cally to microservices:

docker , compose , swarm ,

src , services ,

dev , test , staging , deploy , integration , release , prod ,

iac , saas , devops , setup , script , complete , etc .

Chapter 4 | Microservice detection 35

Folders should contain one of these words, they do not have to be ex-

actly equal, so also docker-compose, developing, testing, production and

scripts are good.

When a folder does not contain any of these keywords it should be referred

to the name of a single microservice, this is why it is discarded.

These keywords turned out to cover almost all cases, but both false positives

and negatives are possible (e.g. abbreviated-repo-name /compose.yml is

probably a false negative).

Order groups by path preference

docker-composes preference order cannot rely on their depth in the filesys-

tembecause somedirectories are clearlypreferable toother regardless thedepth

of the docker-composes (e.g. development/docker/compose.yml is preferable

to test/compose.yml). To give more importance to the directories, a prefer-

ence order among the aforementioned keywords is defined and then the groups

are ordered lexicographically with respect to the path. The preference order is

that in which the keywords appear above (Docker related keywords, then code

directory, software lifecycle phase and in the end miscellaneous ones).

Discard docker-composes with “non-neutral” affix

To avoid docker-composes that refer to particular contexts (and that prob-

ably do not list microservices), neutral affixes have been identified and all those

docker-composes that present different affixes are discarded. The neutral af-

fixes, referring mainly to software lifecycle, are listed below:

services , base ,

dev , build , stack , prod , stable , deploy , test .

Also in this case the keyword is sufficient to be contained (not exactly), so

also development, production, deloyment and testing are included.

Chapter 4 | Microservice detection 36

Just to give an example of a docker-compose that can be discarded at

this step: compose.mysql.yml most likely contains only configuration for the

database.

Also this step can possibly introduce false positives and negatives, but

rarely, because thatof identifying thedocker-compose with thephaseof lifecycle

is a quite common convention.

Discard docker-composes with undesired affixes

In case some docker-composes have more affixes, those with undesired ones

are discarded. Theundesired ones are infra and override because in almost

the totality of cases where they are present they refer to docker-composes that,

respectively, treat infrastructure components and override configurations.

Order docker-composes by affix priority

Toselect themost likely rightdocker-compose, the remainsdocker-composes

are ordered by the affix priority, where the priority is the above order of appear-

ance: initial software lifecycle phases are preferred in order to appreciate the

changes without delays.

Returning docker-compose with the shortest filename

In case (quite rare) ofmore docker-composeswith the samepriority, in order

to make the choice deterministic (so as not to make different choice in different

commits), that with the shortest path is chosen. But it is not a heuristic, so it

is not necessarily the best choice.

4.4.2 Mining docker-compose

Regarding the process followed in the second phase only the last sub-phase,

i.e. the services mining, is explained since for the previous ones, where the

Chapter 4 | Microservice detection 37

docker-compose is reconstructed following its syntax, following the official doc-

umentation is sufficient.

In Algorithm 4.2 an high level overview, that for its simplicity is the faithful

copy of the implementation. It is interesting to comment two aspects: (i) as

name has been chosen the container’s name when present, because the service’s

name is a symbol more for internal use purpose and (ii) when extracting the

build information is extremely important to preserve not only the Dockerfile

information, but also the context.

Algorithm 4.2 Services mining
Input: list of Docker services from the selected docker-compose
Output: list of service tuples (image, container name, build)
1: for each service
2:

3: if image field exists
4: Take that as image
5:

6: if container’s name field exists
7: Take that as name
8: else
9: Take service’s name as name

10:

11: if build field exists
12: Take that as build ▷ preserving context information

13:

14: Append (image, name, build) to a list

15: return tuples list

4.4.3 Detecting microservices

The process followed in the last phase is by far the most complicated to

explain, but it will be treated step by step. In Algorithm 4.3 an overview at

high level, then all the steps will be revealed in details.

Chapter 4 | Microservice detection 38

Algorithm 4.3 Microservices detection

Input: list of service tuple (image, container name, build)
Output: list of microservices
1: Order services by descending length of image and container name
2: for each service
3: if service specifies build
4: if Dockerfile is local
5: if Dockerfile exists
6: →Verified Microservice ← ▷ if Dockerfile copies some code
7: else
8: →Unverified Microservice ←
9: else

10: Not a Microservice ▷ infrastructural component

11: elseif service specifies image
12: Look for all Dockerfiles
13: Look for a match with image
14: if it exists
15: →Matched Microservice ← ▷ if Dockerfile copies some code
16: else
17: Look for a match with name
18: if it exists
19: →Matched Microservice← ▷ if Dockerfile copies some code
20: else
21: Not a Microservice ▷ infrastructural component

22: else
23: Not a Microservice ▷ abstract base service
24:

25: if it is a microservice
26: Validate Dockerfile

Order services by descending length of image and container

Here the aim is, as already mentioned, to privilege the more accurate match

leaving last the more “risky” ones, that is to say those that will lead more likely

to a false positive.

Chapter 4 | Microservice detection 39

Look for Dockerfiles

This step is apparently easy, but it hides some difficulties, indeed in Algo-

rithm 4.4 it is possible to see that some precautions have been adopted.

In order to get all Dockerfiles it is sufficient to search for files whose name

contains *Dockerfile* , but in this way also some false positives are collected.

They are mainly script files used to hard code some build parameters, so that

the build can be run just by running these files instead of having to write the

command with all the arguments, or text files for writing down the command.

These false positives can be removed in a “simple” way: given that the

Dockerfile has not an extension, removing all the results with any extension is

sufficient. The problem is that since filenames can contain dots (and often they

do, using them as separator with the affixes) recognizing the extension is not

possible, but rather detecting those with recurrent extensions is possible. The

recurrent extensions identified in these cases are:

.sh , .ps1 , .nanowin , and .txt .

At this point also Dockerfiles relating to third-party services and for demo

purposes have to be filtered and this is performed by discarding those that

contain in the path folder like

vendor , external , example , and demo .

But a last step is needed to avoid problems during match attempts: some

directories can havemore than oneDockerfile and thiswill invalidate thematch

because a match is only a match when there is no doubt on the Dockerfile to

associate to a service. If more Dockerfiles have the same path, automatically

there is amultiplepairingandthisprevents thematch. Toavoiddoublematches

all Dockerfiles with same path are discarded except one: that with the shortest

filename (again, this is not a heuristic, but only a way to make the choice

deterministic).

Chapter 4 | Microservice detection 40

Algorithm 4.4 Dockerfile research
Input: repository
Output: list of Dockerfiles good for matches
1: Research of all Dockerfiles files
2: Discarding of false positives
3: Discarding of Dockerfiles for external services or demo purpose
4: Grouping by path

Look for a match with image/name

To look for a match between a service and a Dockerfile using image’s or

container’s name is quite simple (as described in Algorithm 4.5). Just need to

list the possible names of the potential microservice identified by the Docker

service, order them by descending length (again to privilege more accurate

match) and selecting those Dockerfiles that contain the name in the path.

Algorithm 4.5 Match attempt
Input: service, Dockerfiles list
Output: matched Dockerfile (if possible)
1: List possible names of eventual microservice
2: Order name by descending length of name
3: for each name
4: Select Dockerfiles that contain it in the path
5: if there is one and only one
6: That is a match

The only aspect to reveal is: how the potential microservice’s name can be

obtained from image’s or container’s name.

In case of image’s name, it will be something like this:

({registry, dockerHubUser}/)?(user[-_/])?(repo[-_/])?microservice

Chapter 4 | Microservice detection 41

and, discarded the first part that is useless, up to four possible names can be

detected, as indicated above.

In case of container’s name, instead, up to two possible names can be de-

tected as indicated below (the first two are alternatives).

({srv, (micro)?service}[-_/])?microservice([-_/]{srv, (micro)?service})?

Validate Dockerfile

As already mentioned in the previous section, both in case of verified or

matched microservice, it is required to check if the Dockerfile really refers to a

microservice by verifying which types of files it copies in the container’s filesys-

tem; indeed if it only copies script and configuration files, indicated by the

following extension

.sh , .xml , .txt , .yaml , .yml , .sql ,

.conf , .config , .cnf , .cfg , .cf , .crt , .key ,

it will be discarded as infrastructural element.

This step can introduce two types of false positives. The first is quite similar

to all the others already mentioned and it happens when script or configuration

files have an extension different from those identified empirically. The second

case isquitedifferent: aDockerfile cancopyanentiredirectory inthecontainer’s

filesystem and it is quite frequent that all the configuration files are stored in a

folder to simply copy them all together. For a really accurate check all the files

contained in the copied directories should be verified (but when it deals with

code directories the number of files they contain can be really huge).

4.5 Implementation

This method has been implemented as a small Python library that makes

available the functions for: (i) selecting docker-compose, (ii) extracting the list

of Docker services and (iii) determining the microservices from them.

Chapter 4 | Microservice detection 42

Also the minor steps are available, but the configurations can be easily

tuned directly acting on some macros.

The code is publicly available on GitHub5.

4.6 Preliminary Effectiveness Evaluation

Being this a totally new approach for detecting microservices before even

evaluating quantitatively its accuracy and efficiency, a preliminary qualitative

evaluation on its effectiveness is required.

This evaluation had the only intent of verifying that the method just pre-

sented has solid foundations. For this reason I did not rely on rigorous criteria

for defining false positives and false negatives, but rather I used criteria based

on instinct and experience. Clearly the next step is necessarily to conduct a

real and rigorous quantitative evaluation.

The targets have been both the docker-compose selection and the microser-

vices detection (not the intermediate phase because it is purely deterministic).

The tests were about to check if:

• given the repositories, and so the set of docker-composes, the method has

chosen the right one and

• given the set of Docker services and the set of Dockerfiles, the method

has detected correctly the microservices.

As already said the verification was instinct-based, without rigorous cri-

teria, so basically the positive or negative result was given basing only on the

names of Docker services and the paths and filenames of docker-composes and

Dockerfiles; however in case of unclear situation, the inputs were analyzed in

its content too.

The results are definitely positive and give rise to hope for the quantitative

evaluation. The docker-compose selection was right in almost the totality of

5github.com/KevinMaggi/detection-and-identification-of-microservices

https://github.com/KevinMaggi/detection-and-identification-of-microservices

Chapter 4 | Microservice detection 43

cases, except just a few corner cases. The microservices detection was a little

more imprecise, but still at more than satisfactory levels. The false positives

were extremely limited and perhaps even almost all fixable implementing the

already mentioned in-depth mechanisms for validating the Dockerfiles; the

false negatives were definitely more, but concentrated in those cases where

the repository was not very schematic (e.g. when microservices’ name were

extended somewhere and contracted somewhere else, effectively preventing a

match).

4.7 Conclusion

Waiting for a more reliable quantitative evaluation of accuracy, I can con-

clude for now that this method has some strengths:

• the docker-compose selection has a high case coverage and efficiency;

• the docker-compose mining is complete, in the sense that following all the

mechanisms documented by Docker is possible to recover all the available

information;

• the microservice detection has on average a fairly high accuracy, but very

high in those repositories that follow some convention/good practice;

• its lightweightness is clearly abig advantage for those studies inEmpirical

Software Engineering that are interested only in the number of microser-

vices, indeed the reduced time needed allows also to execute the analysis

commit-wisely in a reasonable time.

Clearly is not perfect, so it has also some weaknesses:

• the docker-compose selection in some cases, although very limited, goes

wrong;

• the microservices detection presents some false negatives, above all in

those repositories outside the box;

Chapter 4 | Microservice detection 44

• possible infrastructural components developed as part of the repository

(and whose code and Dockerfile are in the repository) are recognized as

microservices, because at the current state they are extremely hard to

discern from real microservices.

4.8 Future Work

Refining the rules for both the docker-compose selection and the microser-

vicesdetection isobviouslypossiblebyobservingabiggerdatasetof repositories

and by introducing an in-depth mechanism for validating the Dockerfiles; how-

ever the next mandatory step to do is the quantitative evaluation of accuracy.

It can be done following two approaches: (i) applying the method to a dataset

of repositories with known architecture and structure (so the ground truth) or

(ii) defining precise criteria to identify which false positives and false negatives

are.

Chapter5
Experiment Execution

Returning to the experiment, in this chapter I discuss just someaspects that

turn out during its execution, while its results will be presented and discussed

in the next one.

5.1 Dataset Definition

The queries retrieved a total of 2491 single repositories (so collapsing repos-

itories resulting from multiple queries into a single result).

FC1 removed the repositories without a docker-compose reducing the set

of results to 686. During this filtering step one repository has been verified by

hand, being that it causes the script to crash (actually it causes a crash of git

clone, likely due to its huge size).

FC2,FC3,FC4 removed repositorieswith too short history, non industrial-

like development and too few commits with an acceptable docker-compose,

reducing the set to 198, 186 and 121 results.

FC5 was the manual criterion (the last one before final selection): from the

121 repositories, only 46 revealed to be a real or industrial demo MSA.

At the end the parameters of FC6 have been tuned to find a configuration

that would have given between 10 and 20 results: such a configuration has been

found with 15 final selected repositories, that are shown in Table 5.1.

The defined dataset is enough heterogeneous under different point of view,

first of all the main languages of repositories that are somehow representative

of the languages diffusion showed in JetBrain’s survey [49]. For this reason it

Chapter 5 | Experiment Execution 46

can be considered satisfactory for the present study.

ID Repository Main
language(s) Type

S01 1-Platform/one-platform TS Real system
S02 OpenCodeFoundation/eSchool C# Real system
S03 ThoreauZZ/spring-cloud-example Java Industry demo
S04 asc-lab/micronaut-microservices-poc Java Industry demo
S05 bee-travels/bee-travels-node JS Industry demo
S06 dotnet-architecture/eShopOnContainers C# Industry demo
S07 geoserver/geoserver-cloud Java Real system
S08 go-saas/kit Go Real system
S09 jvalue/ods TS, JS Real system
S10 learningOrchestra/mlToolKits Python Real system
S11 microrealestate/microrealestate JS Real system
S12 minos-framework/ecommerce-example Python Industry demo
S13 nashtech-garage/yas Java, TS Industry demo
S14 netcorebcn/quiz C# Industry demo
S15 open-telemetry/opentelemetry-demo TS Industry demo

Table 5.1: Selected repositories (more details in Appendix A)

5.2 Dataset Analysis

5.2.1 Data Mining

During the execution of analysis some commits get lost due to the build-

ing process in the systems that require it. Indeed during the building with

the automation tool some commits had not built successfully. In case of long

chunks of consecutive commits failing in build and in any case whenever pos-

sible, some fixes have been made to the Maven POM, Gradle build script and

.NET global.json file, to resolve the error allowing the build to success. In-

terventions mainly concerned about dependency version updates, formatting

corrections and platform/build automation tool version update.

Although the build has been “forced” when possible (i.e. allowing to the

https://github.com/1-Platform/one-platform
https://github.com/OpenCodeFoundation/eSchool
https://github.com/ThoreauZZ/spring-cloud-example
https://github.com/asc-lab/micronaut-microservices-poc
https://github.com/bee-travels/bee-travels-node
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/geoserver/geoserver-cloud
https://github.com/go-saas/kit
https://github.com/jvalue/ods
https://github.com/learningOrchestra/mlToolKits
https://github.com/microrealestate/microrealestate
https://github.com/minos-framework/ecommerce-example
https://github.com/nashtech-garage/yas
https://github.com/netcorebcn/quiz
https://github.com/open-telemetry/opentelemetry-demo

Chapter 5 | Experiment Execution 47

build not to fail on errors when they were non-blocking and apporting the just

mentioned fixing), in some cases of build failure the error was not clear or an

objective solution did not exist, so rather than using a subjective heuristic to

fix the issue, I opted to discard the affected commits.

These cases are mainly related to: (i) dependencies (or repositories of de-

pendencies) that do not exist anymore, (ii) dependencies that make the build

to fail, (iii) absence of build file (in the very initial commits) and (iv) errors in

the build file that are not objectively fixable.

The occurrence of these cases in systems is showed in Table 5.2. Given the

relatively low number of skipped commits (the total incidence on the whole

dataset is less than 1%) I do not believe that this factor could have noticeably

influenced the results. Further considerations are reported in the threats to

validity Chapter 7.

ID Commits Omitted commits

S01 1502 0 0%
S02 275 17 6,18%
S03 279 5 1,79%
S04 384 6 1,56%
S05 375 0 0%
S06

S07 1027 11 1,07%
S08 629 0 0%
S09 1428 26 1,82%
S10 1214 0 0%
S11 412 0 0%
S12 1069 0 0%
S13 535 0 0%
S14 658 27 4,10%
S15 572 0 0%

Total 10359 92 0,89%

Table 5.2: Analyzed commits per system

The system S06 during the analysis phase has been discarded because of

Chapter 5 | Experiment Execution 48

severe building issues: apparently (a high number of) older commits are not

anymore buildablewith actual versions of .NET(evenmodifying requested ver-

sion on configuration files), probably because, being a very long-living system,

the newer versions break backward compatibility with the used ones. Actually

only a minority of commits was buildable, so I decided to exclude it.

5.2.2 Data Analysis

After the analysis data collection, a suspicious TD constantly equal to 0

for a long time has been discovered in S11; a manual inspection has revealed

that in its initial phase (and for a considerable portion of its history) it was a

multi-repositories system. Due to this, it has been excluded from data analysis

phase.

Chapter6
Results

After executing the experiment, the results can be put together and used

to finally answer the RQs. This chapter intends only answer the RQs, while a

more in-depth discussion on the meaning of findings is conducted in Chapter 8.

In this chapter only a summary of results is showed in order to facilitate their

exposure, but a complete report of outcomes is in Appendix B.

6.1 RQ1: TD evolution trend in MSA

Mann-Kendall trend test gives immediately a clear overview on the overall

trend of TD in a MSA; in fact all the 13 systems revealed the presence of a

trend (p–value ≤ 2, 2e−16). Moreover, as possible to see in Table 6.1, almost

all the systems have a strong or very strong trend (i.e. a Kendall’s τ close to

1 in absolute value); only S15 has a quite weak trend with a Kendall’s τ equal

to 0,23. For all the systems it is about a growing trend, as could be expected,

except forS14 that has a quite strong negative trend, representing an exception

since usually theTD tends to accumulate, and for this it deserves to be explored

further.

ID τ

S01, S02, S03, S04, S07, S08, S10, S13 τ ≥ 0, 79

S05, S09, S12 0, 49 ≥ τ ≥ 0, 59

S14 τ = −0, 58
S15 τ = 0, 23

Table 6.1: Kendall’s τ on TD trend

Chapter 6 | Results 50

Going to see the trend obtained from LOESS regression is possible to see

that almost all the systems follow the same trend characterized by a strong

growth in the initial phase of development, followed by a sudden decline in

the growth rate (although TD continues to grow, as showed in the example in

Figure 6.1). I can conjecture that the elbow point corresponds to the passage

from the initial intensive development to maintenance phase, since younger

systems either showcase a smoother change (like system S08) or do not present

at all a variation in the trend (it is the case of systems S07 and S13). This

conjecture can find confirmation in the fact that after the elbow point the

commit frequency decreases, sometimes also in a significant way, and going to

see the original TD evolution it is possible to see notable plateaus.

Figure 6.1: Trend of TD in system S09

Regarding systems S14 and S15, those with a weaker or negative trend,

they show a similar trend characterized by a high initial TD followed by a

constant decreasing until a minimum and then a slow increasing. S14 in the

end stabilizes at a value lower than the initial (reason why the Kendall’s τ is

negative), while S15 keeps growing, as showed in Figure 6.2.

The TD evolution suggests an insight on the initial phase, that reveals a

common factor: both the systems start with a considerable quantity of already

Chapter 6 | Results 51

developed code (so with a certain TD), and the following phase consists on

various refactoring that inevitably lower the TD accumulated in early commits

(or, in practice, even before the first commit).

Figure 6.2: Trend of TD in system S15

Basing on these results I can already reject the null hypothesis H1.1
0 with

statistical confidence, concluding that in MSA systems TD generally tends to

grow over time

As further investigation, the top 10 hotspots in TD have been examined

qualitatively. This investigation reveals that adding a component (be it a mi-

croservice, an infrastructural component or a fronted UI) is the activity that

absolutely introduces more TD, immediately followed by an evolution of the

business logic. Anyway these are not the only activities that can introduce TD,

since in other cases this has been increased also by anupgrade of a library/pack-

age or even by a refactoring. However, as one might expect, refactoring, with

fixing and microservice removal to a lesser extent, is the main activity when a

significant part of TD is paid back. This double face of refactoring is probably

related to its intent, either to clean up the code (and so paying back TD) or

simply to slightly modify it in order to getting ready for further development.

The last inspected aspect regards the “size” of commits (i.e. changed files

Chapter 6 | Results 52

and added/deleted lines): although it is more likely that a big commit impacts

more TD than a smaller one, in many cases small commits introduced a notable

TD suggesting that the relation between these quantities is not so strong.

Moving on the seasonality, the Ollech & Webell combined test returns a

negative response for all the considered systems (i.e. a p–value greater than

0,01 and 0,002 in the individual tests), confirming what it was also evident

visually, namely that there is no seasonality. Contrary to what one might

expect, therefore, TD is not more likely to be introduced/paid back in certain

period of the year (namely before/after seasonal holidays). Clearly for none of

the systems the STL decomposition has been performed.

This gives enough statistical evidence to reject null hypothesis H1.2
0 on the

absence of a seasonality.

RQ1 answer (TD evolution trend in MSA)

TD displays an overall increasing trend in time, above all in the

initial development phase, albeit the rate decreases in advanced phases

characterized by several (long) periods with limited TD introduced.

TD variations can happen both adding microservices or evolving

the business logic, but a variety of other activities can also be the cause.

Refactoring is the main tool to pay back TD, but not always and not the

only tool.

TDdoesnotpresent seasonality,meaning that it couldbe introduced

throughout the year in the same way.

6.2 RQ2: relation between TD and microservices

In order to study the potential correlation between TD and number of mi-

croservices, I start by graphically inspecting the time series of the two metrics.

As it can be seen in the case reported in Figure 6.3, the two evolutions seem to

display an overall similar growth; however the correlation does not appear to

be always present in all commits. As example I can consider the S13 system

Chapter 6 | Results 53

reported in the figure, when the removal of a microservice in mid-April 2023

does not correspond to anyvariation inTD; or at the endofFebruary 2023when

a sudden fall of TD does not match with a variation in microservices number.

Figure 6.3: Evolution of TD and microservices number in system S13

Anyway some other cases show an even weaker correlation, as showed in

Figure 6.4 (S08), where the TD has an almost constant growing trend while

microservices number has a peak in the middle of development and then de-

creases.

Figure 6.4: Evolution of TD and microservices number in system S08

Chapter 6 | Results 54

Inordertoclarifythisaspectwithstatisticalmeaning, theCross-Correlation

gives formal results considering also possible lags. As Table 6.2 summarize, 9

systems out of 13 show a strong or very strong correlation at some lag, and only

4 do not. All the systems characterized by a correlation, show the strongest

correlation at negative or no lags (meaning that the TD never precedes mi-

croservices number), except for S15 that has the strongest correlation at a

positive lag, albeit some negative ones are present also at negative lags (showed

also in Figure 6.5).

ID Cross-Correlation (at some lag)

S01, S02, S09, S10, S15 very strong (>> confidence level)
S07, S12, S13, S14 strong (> confidence level)
S03, S04, S05, S08 absent or very weak (< or ≈ confidence level)

Table 6.2: Cross-Correlation between TD and microservices

Figure 6.5: S12 and S15 TD and microservices CCF

The 9 systems where the two time series correlate (in some measure) have

been subjected to the Granger causality test to determine if they only correlate

or if the microservices time series can be useful to forecast future TD trend

being a relation of causality between them. Of these, only 4 (listed in Table

6.3) revealed a causality, with a p–value < or << 0.01. Among them also

S15 appears, although, as seen before, the strongest correlation was not one of

those at negative lags; evidently in this case, albeit a causality relation exists,

Chapter 6 | Results 55

number of microservices can hardly be used to forecast future trend of TD.

ID Granger causality

S01, S07, S10, S15 Yes
S02, S03, S09, S12, S13 No

Table 6.3: Granger causality

In light of this analysis, enough statistical evidence has been gathered to

already reject the null hypothesis H2
0, concluding that a relation between the

two metrics generally exists.

However, in the end a possible correlation between TD growth rate and

number of microservices has also been investigated, since intuitively I could

expect that as the number of microservices increases (and the system becomes

morecomplex), theTDgrowsathigher rate. This conjecturecouldbediscarded

in light of the result of Cross-Correlation: indeed, although some lags with a

strong positive correlation are present (Table 6.4), they are always matched

with a nearby lag characterized by an equally strong negative correlation (Fig-

ure 6.6), suggesting that the overall correlation is definitely not enough signif-

icant to support the hypothesis.

Therefore adding or removing a microservice has a similar impact in the

TD growth rate independently from the microservices already present. As a

subjective interpretation I could conjecture that this effect is a consequence of

an appropriate adherence to the microservice architecture principles, through

whichmicroservices aredeveloped independentlyby followinga loosely coupled

and highly cohesive architecture.

ID Cross-Correlation (at some lag)

S07, S09, S10 very strong (>> confidence level)
S01, S02, S12 strong (> confidence level)

S03, S04, S05, S08,
S13, S14, S15 absent or very weak (< or ≈ confidence level)

Table 6.4: Cross-Correlation between TD growth rate and microservices

Chapter 6 | Results 56

Figure 6.6: S01 and S13 TD growth rate and microservices CCF

RQ2 answer (Relation between TD and microservices)

TD and microservices number are generally strongly correlated, al-

though in some cases this relation is not present at all, with a phase shift

in advance of the microservices number over the TD.

In some cases also a causality relation exists, but they seem to be

quite isolated cases and not a general tendency.

Regarding the growth rate of TD, this is definitely not related (at

least not significantly) to the number of microservices; so being the

relationbetweenTDandmicroservicesnumberquite linear, theaddition

or removal of a microservice does not impact the growing rate of TD.

Chapter7
Threats to Validity

Despite my best effort, the results of this study have to be interpreted

in light of threats to validity which might have influenced them. It is about

aspects that can have affected execution of experiments, collection of results

or interpretation of them, and in this chapter I discuss them following the

categorization of Runenson et al. [42].

7.1 Construct Validity

This category concernswhether themeasurements adopted are appropriate

to answer the RQs. For this aim I relied on two measures: the TD and the

number of microservices.

Regarding the first one, it has been measured with SonarQube, that uses

the SQALE index. It is a tool (and index) widely used in literature and in

practice [19], but I amaware thatusingadifferent tool couldhave led todifferent

measurements; anyway the difference should not have been substantial [45].

I already said that transformingan irregular-spaced time series to regularly-

spaced one can change the seasonal component result of STL analysis; anyway

as highlighted by Eckner [44], the only effect seems to be a smoothing. Since

I am not interested on the exact seasonality, but only on its coarse shape, this

aspect definitely does not influence the results (even more so than none of the

system have showed seasonality).

With regard to the number of microservices, a more detailed discussion

on possible defects of the detection method has been covered in Section 4.7.

Chapter 7 | Threats to Validity 58

Anyway the heuristic on which is based, i.e. that a microservice corresponds to

a Docker container, should not have affected the results, being that a possible

delay or advance of microservices time series has also been taken into account

by studying the correlation between the two time series at different lags with

CCF.

About CCF, being the two time series non-stationary, a Detrended Cross

Correlation Analysis (DCCA) [46] could have been conducted, but conse-

quently the data should have been differentiated to meet the stationarity re-

quirement of Granger test for causality, so I decided to consistently use the

same approach also for correlation.

7.2 Internal Validity

Here I treat possible confounding factors that could have produced the

recorded results. Just to avoid potential “noise” in the results introduced by

TD measurement, I: (i) discarded all commits that (requiring a compilation)

failed to build and for which it was not possible to find an objective fix that

would have not altered the compilation with respect to the author’s intentions;

(ii) manually scrutinized those commits characterized by an anomalous TD

value and (iii) conducted a rigorous statistical analysis on the collected data.

7.3 External Validity

Concerning the ability to generalize the findings, I can reasonably as-

sert that comparable results might be observed in other microservices-based

software-intensive systems. It is true that a lack of MSA systems is observed,

due to the fact that most of them are commercial products, so finding an open

source one is uncommon, but the dataset as already showed is enough hetero-

geneous in terms of: language, typology, size and scope.

A smaller threat is about the choice of considering only single-repository

Chapter 7 | Threats to Validity 59

systems, i.e. those systems contained entirely in one repository unlike multi-

repositories ones that can spread components over multiple repositories. This

choice has been made not to miss intermediate evolution of the minor repos-

itories between one commit and the next of the main aggregator repository.

Anyway this aspect should be related only to the size and organization of the

system and should not impact its development mode and other aspects that

could influence TD.

7.4 Reliability

The results of this study, given their almost purely quantitative nature,

are extremely likely replicable by other researchers, with the exception of the

manualscrutinyconductedtoanalyzecommitswithanomalousTDvalues(that

anyway are a minimal fraction). The rest of the study is completely based

on mining and data analysis scripts made available in a replication package

reported in Appendix C with the environment characteristic, settings and all

other information.

Chapter8
Discussion

The results just seen allow not only to answer the RQs, as I did in the

previous chapter, but also to elaborate a wider overview on the TD in MSA,

also thanks to the additional qualitative inspections conducted to complement

statistical results. From this study, various (good) properties of MSA show up

and several lessons can be learnt.

I illustrated how TD evolution shows some periods where it does not grow

significantly, but I also pointed out, that they happen almost exclusively in an

advanced phase of the development, when the system is likely to have a slower

evolution (if not an only maintenance phase). During these phases sometimes

long periods of decreasing can also be noticed, very likely induced by actions

aimed to pay back the TD. While this can be seen as a virtuous practice, the

real problem is localized at the early phases of development. In this phase, the

development is very intense, as commit frequency proves, and probably this is

the reason why developers more likely resort to sub-optimal expedients.

It is above all during this phase that developers should be aware that a vari-

ety of activities, although to different extent, can introduce TD (even refactor-

ing if it does not aim specifically at paying back TD): evolving business logic,

introducing new microservices, adding new dependencies or frameworks and

also writing tests. Adopting a code quality analysis phase in the development

workflow at the initial stage certainly reduces the development, but it could

allow to early isolate the main root causes of TD that characterize the whole

system lifecycle.

About the relation betweenTDandmicroservices number, that has showed

Chapter 8 | Discussion 61

up in many systems but not all, it is difficult to find a pattern that identifies

the characteristic of systems where this property has been found. The only

findable connection regards the nature of the systems: in fact all the 3 systems

where the correlation is significant and also a causation is present (namelyS01,

S07 and S10) are real systems, and not industrial demos. Anyway, in the other

analyzed real systems a causality has not been found (S02 and S09) and in a

case not even a correlation (S08). A real industrial workflow, hence, might be

enough rigorous to determine a strict connection between the two metrics.

Another interesting aspect regards the non correlation between TD growth

rate and the number of microservices. Indeed this proves that the addition or

removal of a microservices has similar impact regardless the number of already

present microservices; in other words TD evolution is in nearly linear relation

with the number of microservices. This means that although the system be-

comes bigger and more complex the growth of TD does not rear up. Clearly

such a property is very desirable (also with respect to other architectures, like

themonolithic one), and the possible cause could be found in theMSAprinciple

of independent development.

Chapter9
Conclusion

In this study I present a multiple case study to investigate the evolution

of Technical Debt in microservices architectures. The investigation consider

13 microservice-based systems, heterogeneously selected by different aspects,

above all diversified by for language, size, number of microservices and nature

(real cases or industrial demos).

The study is of primarily quantitative nature, based on Mining Software

Repository, source code quality analysis and statistical analysis of data, al-

though some results have been complemented with manual qualitative inspec-

tion of commits.

The results show that TD evolution is characterized by an overall growing

trend, particularly accentuated in early development phases; the evolution

anyway is not characterized by any periodic trends. TD variations can be

caused by a variety of activities, but the more impacting ones are clearly the

addition/removal of a microservice, the evolution of business logic and the

refactoring. Moreover the extent ofTDvariations is independent of the number

of microservices already present, although the overall TD evolution is strongly

correlated to it.

As concluding remarks, I note that adhering to microservices architecture

principles might keep TD compartmentalized within microservices, allowing it

to not increase superlinearly, and so making it more manageable with respect

to other types of architectures (e.g. monolithic ones). It is crucial for devel-

opers to remain aware of the potential TD they may incur in, regardless the

activities they undertake, because even a trivial change, like the upgrading of

Chapter 9 | Conclusion 63

a dependencies, could have a significant impact on the system’s TD. So if it is

feasible to maintain a consistent level of TD during the evolution of the system,

an increase of TD may be inevitable as the system grows in size and complexity.

9.1 Future Work

This study opens up the possibilities for a series of in-depth analysis, in

fact there are several facets which could provide us more information on the

phenomenon under investigation that have not yet been considered. As future

work, this study can be complemented by considering other factors:

• the individual contribution of eachmicroservice to theTDat system level

can be measured, by extending the microservice detection method to also

find out the paths;

• amore in-depthand systematic analysis ofTDhotspots canbe conducted

to understand which types of activities expose more developers to an

increase of the TD;

• the individual contribution of each developer can be analyzed, by mea-

suring the TD they introduce or pay back during the implementation of

microservices, to understand if the TD is homogeneously distributed or

not;

• other types of TD other than Code TD, can be measured, e.g. the ATD

with the ATDx tool [47];

• interviews with the developers of considered systems can be conducted

to gain further insights on trends and TD hotspots (e.g. which are the

reasons that have led to introduce TD).

AppendixA
Dataset

This appendix showcases the 15 systems composing the dataset analyzed

in the study and already listed in Table 5.1. In Table A.1 a description of the

systems, while in Table A.2 some metadata that give an approximate overview

on their size and diffusion.

ID Description

S01 Integrated hosting platforms for Single Pages Applications
S02 School administration software
S03 Spring Boot demo application (by Alibaba employees)
S04 Demo insurance sales system (by Altkom Software)
S05 Travel agency demo web application (by IBM)
S06 Demo e-shop (by Microsoft)
S07 Open source server for sharing spatial data
S08 Starter kit for Software-as-a-Service systems
S09 Application for collecting data from multiple sources
S10 Distributed Machine Learning integration tool
S11 Open Source Real estate management system
S12 Demo e-shop (by Minos Framework)
S13 Demo e-shop (by NashTech)
S14 Demo real time quiz application (by Barcelona .NET Group)
S15 Demo e-shop (by OpenTelemetry)

Table A.1: Brief description of the systems composing the dataset

Appendix A | Dataset 65

ID
St

ar
s

Fo
rk

s
C

om
m

it
s

C
on

tr
ib

ut
or

s
SL

O
C

A
V

G
#

m
s

Fr
om

ha
sh

T
o

ha
sh

Fr
om

da
te

T
o

da
te

S
01

44
29

15
02

21
41

7k
≈

6
,5

a1
c9

46
6

aa
76

1b
f

01
/0

4/
20

20
09

/0
8/

20
23

S
02

79
36

27
5

9
5k

≈
3

e5
56

35
2

46
b1

9b
5

03
/3

0/
20

19
04

/2
5/

20
23

S
03

10
9

80
27

9
4

7k
≈

8
,5

1b
a3

e3
5

65
4c

f9
b

01
/1

1/
20

17
08

/1
4/

20
20

S
04

48
1

17
1

38
4

9
39

k
≈

7
51

69
e1

3
98

71
a2

e
07

/2
5/

20
18

04
/1

9/
20

21
S
05

30
12

37
5

7
25

5k
≈

4
7c

de
26

7
12

28
25

2
09

/0
4/

20
19

12
/0

9/
20

21
S
06

24
57

2
10

51
4

43
36

16
8

13
7k

≈
1
1
,5

3c
ba

f4
1

b9
aa

e6
7

09
/0

6/
20

16
08

/2
9/

20
23

S
07

19
3

61
10

27
11

67
k

≈
8

9f
64

14
d

f8
f3

d9
0

07
/0

9/
20

20
09

/0
6/

20
23

S
08

10
3

18
62

9
2

11
6k

≈
2
,5

e5
a1

48
8

91
94

ce
4

08
/2

3/
20

21
09

/0
7/

20
23

S
09

35
24

14
28

16
21

9k
≈

6
d4

a4
45

9
84

39
43

f
03

/2
6/

20
19

05
/1

7/
20

22
S
10

75
22

12
14

14
7k

≈
5
,5

b1
1a

11
a

08
46

99
b

03
/1

9/
20

20
05

/1
1/

20
22

S
11

38
5

14
7

41
2

3
32

k
≈

4
,5

47
ef

e5
8

c5
cc

2a
b

11
/0

5/
20

17
06

/1
7/

20
23

S
12

11
1

10
69

4
44

k
≈

8
,5

f4
30

7a
d

9e
3c

dc
c

06
/0

2/
20

21
02

/0
1/

20
22

S
13

25
7

10
3

53
5

28
82

k
≈

8
c8

8e
c5

2
41

77
b1

3
01

/1
8/

20
22

09
/0

8/
20

23
S
14

12
0

41
65

8
3

4k
≈

3
,5

b7
0c

96
0

82
fb

54
6

02
/2

2/
20

17
11

/2
0/

20
18

S
15

11
32

58
0

57
2

88
55

k
≈

1
5

75
bf

84
f

54
ae

fe
5

04
/2

6/
20

22
09

/0
7/

20
23

T
he

co
m

m
it

s
ta

ke
n

in
to

ac
co

un
t

ar
e

th
os

e
fr

om
th

e
ve

ry
fir

st
to

th
e

la
st

of
08

/0
9/

20
23

(a
t

th
e

da
te

of
11

/0
9/

20
23

).
T

he
pr

el
im

in
ar

y
SL

O
C

m
et

ri
c

ha
s

be
en

m
ea

su
re

d
w

it
h

cl
oc

a

T
ab

le
A

.2
:

M
et

ad
at

a
of

th
e

sy
st

em
s

co
m

po
si

ng
th

e
co

ns
id

er
ed

da
ta

se
t

a
gi

th
ub

.c
om

/A
lD

an
ia

l/
cl

oc

https://github.com/AlDanial/cloc

AppendixB
Outcomes

Here all the results of tests and investigations conducted are fully reported

for completeness.

B.1 Mann-Kendall trend test

Results of the Mann-Kendall test, with resulting τ and p–value. A τ value

near to 1 indicates a strongly increasing trend, while near to −1 a strongly

decreasing trend.

ID τ p–value

S01 0,83 ≤ 2, 22e−16
S02 0,82 ≤ 2, 22e−16
S03 0,82 ≤ 2, 22e−16
S04 0,84 ≤ 2, 22e−16
S05 0,49 ≤ 2, 22e−16
S07 0,90 ≤ 2, 22e−16
S08 0,97 ≤ 2, 22e−16
S09 0,59 ≤ 2, 22e−16
S10 0,79 ≤ 2, 22e−16
S12 0,59 ≤ 2, 22e−16
S13 0,84 ≤ 2, 22e−16
S14 -0,58 ≤ 2, 22e−16
S15 0,23 ≤ 2, 22e−16

Table B.1: Mann-Kendall trend test results

Appendix B | Outcomes 67

B.2 TD trend

Plots of TD trend obtained with LOESS regression (in lighter the real mea-

sured evolution).

Figure B.1: S01 and S02 trend plot

Appendix B | Outcomes 68

Figure B.2: S03, S04 and S05 trend plot

Appendix B | Outcomes 69

Figure B.3: S07, S08 and S09 trend plot

Appendix B | Outcomes 70

Figure B.4: S10, S12 and S13 trend plot

Appendix B | Outcomes 71

Figure B.5: S14 and S15 trend plot

Appendix B | Outcomes 72

B.3 Hotspot inspection

Results from manual inspection of top 10 TD hotspots, reporting commit

statistics and main activity performed.

Commit ∆TD Files Adds Dels Activity

477618d +139 23 16124 1 added SPA
4241f46 +71 17 1752 1089 evolution
bc3d70e +70 42 15834 0 added package
3e98824 +67 59 18016 0 added SPA
d15e29a +62 27 11855 958 evolution
eca89a9 −62 10 135 272 fixing
fd683c5 −60 21 2830 9304 test
fe3ec08 +55 53 15546 0 added SPA
5ea9a61 −55 109 17853 23134 changed SPA framework
c7677c9 +51 60 1702 435 added SPA

Table B.2: S01 hotspots insight

Commit ∆TD Files Adds Dels Activity

d5835ca −75 36 0 1049 removed microservice
41ff3f6 +65 30 898 0 added microservice
dc0e813 +55 12 262 4 added gateway
ffa43de +30 41 401 291 evolution
1ca5244 +30 60 809 1257 evolution
9740132 +26 31 534 8 evolution UI
0343337 −21 36 36 39245 substituted local libraries with

package manager
a10ad82 +20 9 50 45 evolution microservice
8b8db0e +20 4 68 6 refactoring
a907392 +20 6 169 0 added Docker to microservices
3446715 +20 3 25 13 error fixing

Table B.3: S02 hotspots insight

Appendix B | Outcomes 73

Commit ∆TD Files Adds Dels Activity

8d72c71 +3510 13 257 0 evolution
f596edc +3510 13 257 0 evolution
24a4ac9 +1698 1 1 0 added module
1ba3e35 +216 46 1258 0 initial commit
89db00d +180 51 751 295 refactoring
1d26165 −102 84 300 349 refactoring
b366099 +44 8 89 9 added microservice
6496d0a −40 6 2 97 refactoring
c2bf313 +40 4 95 0 refactoring
b206af8 +39 28 125 109 miscellaneous

Table B.4: S03 hotspots insight

Commit ∆TD Files Adds Dels Activity

0ab3b02 +547 80 2489 10 added microservice
d895297 +482 44 2199 2 added microservice
b4e0c2e +120 27 384 335 added microservice
d2c5226 −105 14 13 138 evolution microservice
e7e3ba8 +92 20 1050 0 added microservice
349b737 +85 17 381 0 evolution microservice
9cd7c1d +75 39 423 22 initial UI in Angular
2d4b650 −75 8 29 24 deprecations fixing
c60e021 +72 52 2890 751 initial UI in Vue.js
c5f1e18 +70 13 230 7 evolution microservice

Table B.5: S04 hotspots insight

Commit ∆TD Files Adds Dels Activity

9a4a93f +992 36 309 261 momentarily Jaeger disabling
699ee32 −357 22 249 220 error fixing + prettification
b6e54a1 +116 102 153543 109 version 2
918e970 +115 57 2530 383 UI
d72f706 +110 15 81917 3 added microservice
72b380b +107 132 1502 623 miscellaneous
c9efad1 +105 9 1372 0 initial commit
ed61356 +104 26 631 119 added microservice
8660e53 +77 20 8859 0 added microservice
0b9c379 +70 2 66 26 evolution microservice

Table B.6: S05 hotspots insight

Appendix B | Outcomes 74

Commit ∆TD Files Adds Dels Activity

a0004ec +3231 93 1670 1165 evolution
19db639 +2557 35 3364 1 evolution microservice
2bcfef9 +885 1 1 1 update Java from 11 to 17
f7ee79f +723 16 348 5 evolution UI
86fd33f +702 46 829 537 evolution microservice
174b87d +682 156 3867 4203 refactoring dependencies
5741d71 −680 2 19 250 test
285b40a −538 4 37 10 Maven profile
b047f7c −537 615 317 228 project structure refactoring
e2d5b76 +500 1 2096 0 evolution microservice

Table B.7: S07 hotspots insight

Commit ∆TD Files Adds Dels Activity

ba2d690 +3988 29 15627 162 added microservice + evolution
669adfe +1025 101 17848 0 initial code
6c4f742 −797 20 343 616 deleted microservice
704257c +731 15 2983 148 evolution
f6e431d +643 64 2765 667 evolution
82cf969 +629 20 7151 28 added microservices
9fb9120 +549 36 5198 1 added microservices
2aec0c2 +467 12 5093 90 added microservice + evolution
c286326 +414 89 4598 171 added package + evolution
d9b3122 +397 78 6169 63 added microservice + evolution

Table B.8: S08 hotspots insight

Commit ∆TD Files Adds Dels Activity

00cee1c +148 1 68 15 test
c2aa19d +142 41 689 368 refactoring microservice
ad48c09 +105 6 14 5 refactoring microservice
b109171 −96 7 71 86 refactoring microservice + test
cc583c5 −87 9 160 152 error fixing
e1438c0 −80 17 44 23 warning fixing
9b810a8 +78 2 58 4 test
17cb8ec +72 4 40 18 test
4384431 −72 2 0 12 refactoring
4a8edbd +70 24 626 0 initial structure microservice

Table B.9: S09 hotspots insight

Appendix B | Outcomes 75

Commit ∆TD Files Adds Dels Activity

50d70c8 −250 7 52 256 refactoring
2be757c +150 8 386 7 initial configuration, code, files
37a21af +130 18 849 115 added microservice + evolution
a4f3b14 +125 6 267 0 added microservice
d5cf670 +120 1 1 1 refactoring
47b3cbc +120 6 406 1 added microservice
7f8bbea +120 14 794 73 added microservice
09c49db −110 21 695 771 refactoring microservices
71addd6 +100 12 127 27 evolution
5d9e0d1 +80 2 26 24 refactoring

Table B.10: S10 hotspots insight

Commit ∆TD Files Adds Dels Activity

080ba4d −75 13 78 167 configuration
9f429e6 −75 13 78 167 configuration
c572806 +60 13 693 0 initial gateway
f51681f −60 6 89 23 test + dependencies
54998de +60 13 171 31 refactoring
5786052 +60 14 170 14 splitted microservice
592984a +50 12 59 135 docker configuration
fab4fbe +47 11 437 32 refactoring + test
2b32e29 +40 5 87 11 added microservice
bbeba43 −40 124 1682 645 refactoring structure

Table B.11: S12 hotspots insight

Commit ∆TD Files Adds Dels Activity

b40a71c −304 39 718 1113 refactoring
fba9452 +149 11 507 23 evolution
400822b +120 46 1432 45 added microservice + fixing
9e29850 +110 41 1575 277 added microservice
2f14180 +106 3 174 1 test
3866e7b +98 18 182 27 evolution
974e58a +98 20 613 13 evolution microservice
be130c7 +94 5 324 0 added microservice + test
0bf2eb2 +92 38 1341 19 added microservice
55b748a +88 6 357 2 evolution microservice + test

Table B.12: S13 hotspots insight

Appendix B | Outcomes 76

Commit ∆TD Files Adds Dels Activity

a0f2499 −75 29 49 568 substituted component with li-
brary

c4f4bed −40 14 21 74 upgrade library
8645526 +31 11 363 0 added microservice
9a39ba5 −21 9 6 194 updated package
56861be −10 11 118 95 refactoring
20f5743 −10 15 39 115 refactoring
76355dd +10 9 64 27 refactoring
2fddec3 −10 1 1 2 updated package
89b0c84 −10 36 87 189 refactoring
540d41a −10 4 88 27 evolution + test
57b5da8 +10 76 445 145 refactoring

Table B.13: S14 hotspots insight

Commit ∆TD Files Adds Dels Activity

b28cb38 +2810 201 3654 7 initial code
c623a8f +1548 27 15601 1249 evolution + dependencies
bc0cd67 −585 21 197 3041 migrated microservice to other

language
02cd941 −515 10 67 2085 refactoring microservice
c8f1829 −396 10 191 3690 refactoring microservice
a6b6abb −396 13 54 3663 refactoring microservice
a1d1d73 −396 9 35 3653 refactoring microservice
e554195 −386 23 1894 4259 migrated microservice to other

language
7c5cee8 +72 14 156 55 evolution
deaf1f6 +35 236 502 2727 license comments + fixing

Table B.14: S15 hotspots insight

Appendix B | Outcomes 77

B.4 Ollech&Webel seasonality test

All the tested systems got a negative response in the seasonality test (only

system with a > 24 months history subjected to test).

ID Response

S01, S02, S03, S04, S05, S07, S08, S09, S10 No seasonality

Table B.15: Ollech&Webel seasonality test

Appendix B | Outcomes 78

B.5 TD and microservices evolution

Plots with evolution of TD, microservices number and commit frequency.

Figure B.6: S01 and S02 evolution plot

Appendix B | Outcomes 79

Figure B.7: S03, S04 and S05 evolution plot

Appendix B | Outcomes 80

Figure B.8: S07, S08 and S09 evolution plot

Appendix B | Outcomes 81

Figure B.9: S10, S12 and S13 evolution plot

Appendix B | Outcomes 82

Figure B.10: S14 and S15 evolution plot

Appendix B | Outcomes 83

B.6 TD and microservices correlation

Cross-Correlation Function results between TD evolution and number of

microservices evolution.

Figure B.11: S01–S07 CCF between TD and number of ms

Appendix B | Outcomes 84

Figure B.12: S08–S15 CCF between TD and number of ms

Appendix B | Outcomes 85

B.7 Granger causality test

Results of Granger causality test in systems that present a correlation at

negative lags between TD and microservices number.

ID Causality p–value

S01 Yes 1, 55e−9
S02 No 0,22
S03 No 0,55
S07 Yes 8, 00e−05
S09 No 0,88
S10 Yes 0,01
S12 No 0,40
S13 No 0,91
S15 Yes 1, 08e−17

Table B.16: Granger causality test results

Appendix B | Outcomes 86

B.8 TD growth rate and microservices correlation

Cross-Correlation Function results between TD growth rate and number of

microservices evolution.

Figure B.13: S01–S07 CCF between TD growth rate and number of ms

Appendix B | Outcomes 87

Figure B.14: S08–S15 CCF between TD growth rate and number of ms

AppendixC
Replicability

A replication package with scripts, configuration and data (both raw data

and final results) is publicly available at:

github.com/KevinMaggi/evolution-of-code-td-in-msa_rep-pkg.

Brief instructions about how to replicate the steps taken in the study are

described in the README.

Following the technical specification under which the experiments have

been executed:

• Python v3.10.6

• SonarScanner CLI v4.8.0.2856

• SonarScanner for Maven v3.9.1

• SonarScanner for .NET v5.13.1

• Node.js v18.16.1

• Maven v3.6.3

• Gradle v8.3

• .NET v7.0.113

• OpenJDK v17.0.8.1

• SonarQube™ v9.9 LTS

• R v4.3.1

• Docker v24.0.6

• Docker Compose v2.21.0

List of dependencies (with version) of Python scripts instead is available in

the src/requirements.txt file.

https://github.com/KevinMaggi/evolution-of-code-td-in-msa_rep-pkg
https://github.com/KevinMaggi/evolution-of-code-td-in-msa_rep-pkg/blob/main/src/requirements.txt

Bibliography

References

[1] R. Verdecchia, K. Maggi, L. Scommegna, and E. Vicario, “Technical Debt

Evolution in Microservice Architectures: A Preliminary Case Study,” in

Proceedings of the 1st International Workshop on Quality in Software

Architecture (QUALIFIER), 2023.

[2] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Tech-

nical Debt in Software Engineering (Dagstuhl Seminar 16162),” Dagstuhl

Reports, vol. 6, 2016.

[3] N. S. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spínola,

“Towards an Ontology of Terms on Technical Debt,” in 2014 Sixth Inter-

national Workshop on Managing Technical Debt, 2014.

[4] N. Rios, T. Mendes, M. Mendonça, R. Spínola, F. Shull, and C. Seaman,

“Identification and Management of Technical Debt: A Systematic Map-

ping Study,” Information and Software Technology, vol. 70, 2015.

[5] Z. Li, P. Avgeriou, and P. Liang, “A Systematic Mapping Study on Techni-

calDebtand ItsManagement,” Journal of Systems and Software, vol. 101,

2015.

[6] P. Francesco, P. Lago, and I. Malavolta, “Architecting with Microservices:

a SystematicMappingStudy,” Journal of Systems and Software, vol. 150,

2019.

BIBLIOGRAPHY 90

[7] J. Soldani, D. Tamburri, and W.-J. Heuvel, “The Pains and Gains of Mi-

croservices: A Systematic Grey Literature Review,” Journal of Systems

and Software, vol. 146, 2018.

[8] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Microservices

in Industry: Insights into Technologies, Characteristics, and Software

Quality,” in Proceedings of the 2019 IEEE International Conference on

Software Architecture Workshops (ICSAW), 2019.

[9] W. Assunção, J. Krüger, S. Mosser, and S. Selaoui, “How do microservices

evolve? An empirical analysis of changes in open-source microservice

repositories,” Journal of Systems and Software, vol. 204, 2023.

[10] V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, “Does Migrating a

Monolithic System to Microservices Decrease the Technical Debt?,” Jour-

nal of Systems and Software, vol. 169, 2020.

[11] V.Lenarduzzi andD.Taibi, “Microservices,ContinuousArchitecture, and

Technical Debt Interest: An Empirical Study,” arXiv e-prints, 2018.

[12] S. Toledo, A. Martini, and D. Sjøberg, “Identifying architectural technical

debt, principal, and interest in microservices: A multiple-case study,”

Journal of Systems and Software, vol. 177, 2021.

[13] S. Toledo, A. Martini, A. Przybyszewska, and D. Sjøberg, “Architec-

tural Technical Debt in Microservices: A Case Study in a Large Com-

pany,” in 2019 IEEE/ACM International Conference on Technical Debt

(TechDebt), 2019.

[14] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Assuring the

Evolvability of Microservices: Insights into Industry Practices and Chal-

lenges,” in 2019 IEEE International Conference on Software Mainte-

nance and Evolution (ICSME), 2019.

BIBLIOGRAPHY 91

[15] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Limiting Tech-

nical Debt with Maintainability Assurance - An Industry Survey on Used

Techniques and Differences with Service- and Microservice-Based Sys-

tems,” in 2018 IEEE/ACM International Conference on Technical Debt

(TechDebt), 2018.

[16] A. Villa, J. O. Ocharán-Hernández, J. C. Pérez-Arriaga, and X. Limón,

“A Systematic Mapping Study on Technical Debt in Microservices,” in

2022 10th International Conference in Software Engineering Research

and Innovation (CONISOFT), 2022.

[17] N. Kozanidis, R. Verdecchia, and E. Guzman, “Asking about Technical

Debt: Characteristics and Automatic Identification of Technical Debt

Questions on Stack Overflow,” in Proceedings of the 16th ACM / IEEE

International Symposium on Empirical Software Engineering and Mea-

surement, Association for Computing Machinery, 2022.

[18] V. R. Basili, G. Caldiera, and D. Rombach, “The Goal Question Metric

Approach,” in Encyclopedia of Software Engineering, Wiley, 1994.

[19] P. C. Avgeriou, D. Taibi, A. Ampatzoglou, F. Arcelli Fontana, T. Besker,

A. Chatzigeorgiou, V. Lenarduzzi, A. Martini, A. Moschou, I. Pigazzini,

N.Saarimaki,D.D.Sas, S. S. deToledo, andA.A.Tsintzira, “AnOverview

and Comparison of Technical Debt Measurement Tools,” IEEE Software,

vol. 38, no. 3, 2021.

[20] M. I. Rahman, S. Panichella, and D. Taibi, “A curated Dataset of

Microservices-Based Systems,” in Joint Proceedings of the Inforte Sum-

mer School on Software Maintenance and Evolution, CEUR-WS, 2019.

[21] V.Kovalenko, F.Palomba, andA.Bacchelli, “Miningfile histories: Should

we consider branches?,” in Proceedings of the 33rd ACM/IEEE Interna-

tional Conference on Automated Software Engineering, 2018.

BIBLIOGRAPHY 92

[22] J.-L. Letouzey, “The SQALE method for evaluating Technical Debt,”

in 2012 Third International Workshop on Managing Technical Debt

(MTD), 2012.

[23] K. W. Hipel and A. I. McLeod, Time series modelling of water resources

and environmental systems. Elsevier, 1994.

[24] W. S. Cleveland and S. J. Devlin, “Locally weighted regression: an ap-

proach to regression analysis by local fitting,” Journal of the American

statistical association, vol. 83, no. 403, 1988.

[25] D. Ollech and K. Webel, “A random forest-based approach to identifying

the most informative seasonality tests,” Discussion Papers 55, Deutsche

Bundesbank, 2020.

[26] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “STL:

A seasonal-trend decomposition,” J. Off. Stat, vol. 6, no. 1, 1990.

[27] A. Atchison, C. Berardi, N. Best, E. Stevens, and E. Linstead, “A Time

SeriesAnalysisofTravisTorrentBuilds: ToEverythingThere IsaSeason,”

in 2017 IEEE/ACM 14th International Conference on Mining Software

Repositories (MSR), 2017.

[28] I. Malavolta, R. Verdecchia, B. Filipovic, M. Bruntink, and P. Lago, “How

Maintainability Issues of Android Apps Evolve,” in 2018 IEEE Interna-

tional Conference on Software Maintenance and Evolution (ICSME),

2018.

[29] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S.

Springer, 2002.

[30] T. R. Derrick and J. M. Thomas, Time Series Analysis: The Cross-

Correlation Function, ch. 7, pp. 189–205. Human Kinetics Publishers,

2004.

BIBLIOGRAPHY 93

[31] P. J. Brockwell and R. A. Davis, Time series: theory and methods.

Springer science & business media, 2009.

[32] C. W. Granger, “Investigating causal relations by econometric models

and cross-spectral methods,” Econometrica: journal of the Econometric

Society, 1969.

[33] H. Akaike, “Information theory and an extension of the maximum like-

lihood principle,” in Selected papers of hirotugu akaike, pp. 199–213,

Springer, 1998.

[34] R. Dean and W. Dunsmuir, “Dangers and uses of cross-correlation in an-

alyzing time series in perception, performance, movement, and neuro-

science: The importance of constructing transfer function autoregressive

models,” Behavior research methods, vol. 48, 2015.

[35] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for autore-

gressive time series with a unit root,” Journal of the American statistical

association, vol. 74, no. 366a, pp. 427–431, 1979.

[36] L.Baresi,G.Quattrocchi, andD.A.Tamburri, “MicroserviceArchitecture

PracticesandExperience: aFocusedLookonDockerConfigurationFiles.”

Preprint, 2022.

[37] G. Muntoni, J. Soldani, and A. Brogi, “Mining the Architecture of

Microservice-Based Applications from their Kubernetes Deployment,” in

Proceedings of the 16th International Workshop on Engineering Service-

Oriented Applications and Cloud Services (WESOACS) (Springer, ed.),

2021.

[38] J. Soldani, G. Muntoni, D. Neri, and A. Brogi, “The µTOSCA toolchain:

Mining, analyzing, and refactoring microservice-based architectures,”

Software: Practice and Experience, vol. 51, 2021.

BIBLIOGRAPHY 94

[39] N. Alshuqayran, N. Ali, and R. Evans, “Towards Micro Service Architec-

ture Recovery: An Empirical Study,” in 2018 IEEE International Con-

ference on Software Architecture (ICSA), IEEE, 2018.

[40] F. Rademacher, S. Sachweh, and A. Zündorf, “A Modeling Method for

Systematic Architecture Reconstruction of Microservice-Based Software

Systems,” in25th International Conference on Exploring Modeling Meth-

ods for Systems Analysis and Development (EMMSAD 2020), 2020.

[41] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino,

and A. Di Salle, “MicroART: A Software Architecture Recovery Tool for

Maintaining Microservice-Based Systems,” in 2017 IEEE International

Conference on Software Architecture Workshops (ICSAW), 2017.

[42] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical software engineering,

vol. 14, 2009.

[43] C. Wohlin, M. Höst, and K. Henningsson, “Empirical research methods in

software engineering,” Empirical methods and studies in software engi-

neering: Experiences from ESERNET, 2003.

[44] A. Eckner, “A note on trend and seasonality estimation for unevenly-

spaced time series,” eckner.com, 2012.

[45] T. Amanatidis, A. Moschou, N. Mittas, A. Chatzigeorgiou, A. Ampat-

zoglou, and L. Angelis, “Evaluating the Agreement among Technical Debt

Measurement Tools: Building an Empirical Benchmark of Technical Debt

Liabilities,” Empirical Software Engineering, vol. 25, 2020.

[46] B. Podobnik and H. E. Stanley, “Detrended cross-correlation analysis: a

new method for analyzing two nonstationary time series,” Physical review

letters, vol. 100, no. 8, 2008.

BIBLIOGRAPHY 95

[47] S. Ospina, R. Verdecchia, I. Malavolta, and P. Lago, “ATDx: A tool

for Providing a Data-driven Overview of Architectural Technical Debt

in Software-intensive Systems,” in European Conference on Software Ar-

chitecture (2021), 2021.

Online Resources

[48] D. Taibi, “A curated list of open source projects developed with a

microservices architectural style.” https://github.com/davidetaibi/

Microservices_Project_List. last accessed 01/09/2023.

[49] Jetbrains, “The state of developer ecosystem 2022.” https://

www.jetbrains.com/lp/devecosystem-2022/, 2022. last accessed

11/09/2023.

https://github.com/davidetaibi/Microservices_Project_List
https://github.com/davidetaibi/Microservices_Project_List
https://www.jetbrains.com/lp/devecosystem-2022/
https://www.jetbrains.com/lp/devecosystem-2022/

List of Figures

3.1 Dataset creation process overview 10

3.2 Dataset analysis process overview 14

4.1 Microservices detection workflow 24

4.2 Phase 1 workflow: docker-compose location 26

4.3 Phase 2 workflow: docker-compose mining 29

4.4 Phase 3 workflow: detecting microservices 31

6.1 Trend of TD in system S09 50

6.2 Trend of TD in system S15 51

6.3 Evolution of TD and microservices number in system S13 . 53

6.4 Evolution of TD and microservices number in system S08 . 53

6.5 S12 and S15 TD and microservices CCF 54

6.6 S01 and S13 TD growth rate and microservices CCF 56

B.1–B.5 S01–S15 trend plots 67–71

B.6–B.10 S01–S15 evolution plots 78–82

B.11–B.12 S01–S15 TD and number of ms CCF 83–84

B.13–B.14 S01–S15 TD growth rate and number of ms CCF . . . 86–87

96

List of Tables

5.1 Selected repositories (more details in Appendix A) 46

5.2 Analyzed commits per system 47

6.1 Kendall’s τ on TD trend 49

6.2 Cross-Correlation between TD and microservices 54

6.3 Granger causality . 55

6.4 Cross-Correlation between TD growth rate and microservices 55

A.1 Brief description of the systems composing the dataset . . . 64

A.2 Metadata of the systems composing the considered dataset . 65

B.1 Mann-Kendall trend test results 66

B.2–B.14 S01–S15 hotspots insight 72–76

B.15 Ollech&Webel seasonality test 77

B.16 Granger causality test results 85

97

	Acknowledgment
	Abstract
	Sommario
	Introduction and Motivation
	Related works
	Study Design
	Research Goal
	Research Questions
	Research Process
	Dataset Definition
	Dataset Analysis

	Microservice detection
	State of Art
	Overview on Problem and Solution
	Problem Formulation
	Proposed Solution

	Concept
	Locating docker-compose
	Mining docker-compose
	Detecting microservices

	Design
	Locating docker-compose
	Mining docker-compose
	Detecting microservices

	Implementation
	Preliminary Effectiveness Evaluation
	Conclusion
	Future Work

	Experiment Execution
	Dataset Definition
	Dataset Analysis
	Data Mining
	Data Analysis

	Results
	RQ1: TD evolution trend in MSA
	RQ2: relation between TD and microservices

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Discussion
	Conclusion
	Future Work

	Dataset
	Outcomes
	Mann-Kendall trend test
	TD trend
	Hotspot inspection
	Ollech&Webel seasonality test
	TD and microservices evolution
	TD and microservices correlation
	Granger causality test
	TD growth rate and microservices correlation

	Replicability
	Bibliography
	List of Figures
	List of Tables

